You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/audio/tests/features/test_kaldi.py

82 lines
2.9 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddleaudio
import torch
import torchaudio
from base import FeatTest
class TestKaldi(FeatTest):
def initParmas(self):
self.window_size = 1024
self.dtype = 'float32'
def test_window(self):
t_hann_window = torch.hann_window(
self.window_size, periodic=False, dtype=eval(f'torch.{self.dtype}'))
t_hamm_window = torch.hamming_window(
self.window_size,
periodic=False,
alpha=0.54,
beta=0.46,
dtype=eval(f'torch.{self.dtype}'))
t_povey_window = torch.hann_window(
self.window_size, periodic=False,
dtype=eval(f'torch.{self.dtype}')).pow(0.85)
p_hann_window = paddleaudio.functional.window.get_window(
'hann',
self.window_size,
fftbins=False,
dtype=eval(f'paddle.{self.dtype}'))
p_hamm_window = paddleaudio.functional.window.get_window(
'hamming',
self.window_size,
fftbins=False,
dtype=eval(f'paddle.{self.dtype}'))
p_povey_window = paddleaudio.functional.window.get_window(
'hann',
self.window_size,
fftbins=False,
dtype=eval(f'paddle.{self.dtype}')).pow(0.85)
np.testing.assert_array_almost_equal(t_hann_window, p_hann_window)
np.testing.assert_array_almost_equal(t_hamm_window, p_hamm_window)
np.testing.assert_array_almost_equal(t_povey_window, p_povey_window)
def test_fbank(self):
ta_features = torchaudio.compliance.kaldi.fbank(
torch.from_numpy(self.waveform.astype(self.dtype)))
pa_features = paddleaudio.compliance.kaldi.fbank(
paddle.to_tensor(self.waveform.astype(self.dtype)))
np.testing.assert_array_almost_equal(
ta_features, pa_features, decimal=4)
def test_mfcc(self):
ta_features = torchaudio.compliance.kaldi.mfcc(
torch.from_numpy(self.waveform.astype(self.dtype)))
pa_features = paddleaudio.compliance.kaldi.mfcc(
paddle.to_tensor(self.waveform.astype(self.dtype)))
np.testing.assert_array_almost_equal(
ta_features, pa_features, decimal=4)
if __name__ == '__main__':
unittest.main()