You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deploy/ctc_decoders.cpp

317 lines
11 KiB

#include <iostream>
#include <map>
#include <algorithm>
#include <utility>
#include <cmath>
#include <limits>
#include "fst/fstlib.h"
#include "ctc_decoders.h"
#include "decoder_utils.h"
#include "path_trie.h"
#include "ThreadPool.h"
typedef float log_prob_type;
std::string ctc_best_path_decoder(std::vector<std::vector<double> > probs_seq,
std::vector<std::string> vocabulary)
{
// dimension check
int num_time_steps = probs_seq.size();
for (int i=0; i<num_time_steps; i++) {
if (probs_seq[i].size() != vocabulary.size()+1) {
std::cout<<"The shape of probs_seq does not match"
<<" with the shape of the vocabulary!"<<std::endl;
exit(1);
}
}
int blank_id = vocabulary.size();
std::vector<int> max_idx_vec;
double max_prob = 0.0;
int max_idx = 0;
for (int i=0; i<num_time_steps; i++) {
for (int j=0; j<probs_seq[i].size(); j++) {
if (max_prob < probs_seq[i][j]) {
max_idx = j;
max_prob = probs_seq[i][j];
}
}
max_idx_vec.push_back(max_idx);
max_prob = 0.0;
max_idx = 0;
}
std::vector<int> idx_vec;
for (int i=0; i<max_idx_vec.size(); i++) {
if ((i == 0) || ((i>0) && max_idx_vec[i]!=max_idx_vec[i-1])) {
idx_vec.push_back(max_idx_vec[i]);
}
}
std::string best_path_result;
for (int i=0; i<idx_vec.size(); i++) {
if (idx_vec[i] != blank_id) {
best_path_result += vocabulary[idx_vec[i]];
}
}
return best_path_result;
}
std::vector<std::pair<double, std::string> >
ctc_beam_search_decoder(std::vector<std::vector<double> > probs_seq,
int beam_size,
std::vector<std::string> vocabulary,
int blank_id,
double cutoff_prob,
Scorer *ext_scorer)
{
// dimension check
int num_time_steps = probs_seq.size();
for (int i=0; i<num_time_steps; i++) {
if (probs_seq[i].size() != vocabulary.size()+1) {
std::cout << " The shape of probs_seq does not match"
<< " with the shape of the vocabulary!" << std::endl;
exit(1);
}
}
// blank_id check
if (blank_id > vocabulary.size()) {
std::cout << " Invalid blank_id! " << std::endl;
exit(1);
}
// assign space ID
std::vector<std::string>::iterator it = std::find(vocabulary.begin(),
vocabulary.end(), " ");
int space_id = it - vocabulary.begin();
if(space_id >= vocabulary.size()) {
std::cout << " The character space is not in the vocabulary!"<<std::endl;
exit(1);
}
static log_prob_type POS_INF = std::numeric_limits<log_prob_type>::max();
static log_prob_type NEG_INF = -POS_INF;
static log_prob_type NUM_MIN = std::numeric_limits<log_prob_type>::min();
// init
PathTrie root;
root._log_prob_b_prev = 0.0;
root._score = 0.0;
std::vector<PathTrie*> prefixes;
prefixes.push_back(&root);
if ( ext_scorer != nullptr && !ext_scorer->is_character_based()) {
if (ext_scorer->_dictionary == nullptr) {
// TODO: init dictionary
ext_scorer->set_char_map(vocabulary);
// add_space should be true?
ext_scorer->fill_dictionary(true);
}
auto fst_dict = static_cast<fst::StdVectorFst*>(ext_scorer->_dictionary);
fst::StdVectorFst* dict_ptr = fst_dict->Copy(true);
root.set_dictionary(dict_ptr);
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
root.set_matcher(matcher);
}
for (int time_step = 0; time_step < num_time_steps; time_step++) {
std::vector<double> prob = probs_seq[time_step];
std::vector<std::pair<int, double> > prob_idx;
for (int i=0; i<prob.size(); i++) {
prob_idx.push_back(std::pair<int, double>(i, prob[i]));
}
// pruning of vacobulary
int cutoff_len = prob.size();
if (cutoff_prob < 1.0) {
std::sort(prob_idx.begin(),
prob_idx.end(),
pair_comp_second_rev<int, double>);
double cum_prob = 0.0;
cutoff_len = 0;
for (int i=0; i<prob_idx.size(); i++) {
cum_prob += prob_idx[i].second;
cutoff_len += 1;
if (cum_prob >= cutoff_prob) break;
}
prob_idx = std::vector<std::pair<int, double> >( prob_idx.begin(),
prob_idx.begin() + cutoff_len);
}
std::vector<std::pair<int, log_prob_type> > log_prob_idx;
for (int i=0; i<cutoff_len; i++) {
log_prob_idx.push_back(std::pair<int, log_prob_type>
(prob_idx[i].first, log(prob_idx[i].second + NUM_MIN)));
}
// loop over chars
for (int index = 0; index < log_prob_idx.size(); index++) {
auto c = log_prob_idx[index].first;
log_prob_type log_prob_c = log_prob_idx[index].second;
//log_prob_type log_probs_prev;
for (int i = 0; i < prefixes.size() && i<beam_size; i++) {
auto prefix = prefixes[i];
// blank
if (c == blank_id) {
prefix->_log_prob_b_cur = log_sum_exp(
prefix->_log_prob_b_cur,
log_prob_c + prefix->_score);
continue;
}
// repeated character
if (c == prefix->_character) {
prefix->_log_prob_nb_cur = log_sum_exp(
prefix->_log_prob_nb_cur,
log_prob_c + prefix->_log_prob_nb_prev
);
}
// get new prefix
auto prefix_new = prefix->get_path_trie(c);
if (prefix_new != nullptr) {
float log_p = NEG_INF;
if (c == prefix->_character
&& prefix->_log_prob_b_prev > NEG_INF) {
log_p = log_prob_c + prefix->_log_prob_b_prev;
} else if (c != prefix->_character) {
log_p = log_prob_c + prefix->_score;
}
// language model scoring
if (ext_scorer != nullptr &&
(c == space_id || ext_scorer->is_character_based()) ) {
PathTrie *prefix_to_score = nullptr;
// don't score the space
if (ext_scorer->is_character_based()) {
prefix_to_score = prefix_new;
} else {
prefix_to_score = prefix;
}
double score = 0.0;
std::vector<std::string> ngram;
ngram = ext_scorer->make_ngram(prefix_to_score);
score = ext_scorer->get_log_cond_prob(ngram) *
ext_scorer->alpha;
log_p += score;
log_p += ext_scorer->beta;
}
prefix_new->_log_prob_nb_cur = log_sum_exp(
prefix_new->_log_prob_nb_cur, log_p);
}
}
} // end of loop over chars
prefixes.clear();
// update log probabilities
root.iterate_to_vec(prefixes);
// sort prefixes by score
if (prefixes.size() >= beam_size) {
std::nth_element(prefixes.begin(),
prefixes.begin() + beam_size,
prefixes.end(),
prefix_compare);
for (size_t i = beam_size; i < prefixes.size(); i++) {
prefixes[i]->remove();
}
}
}
for (size_t i = 0; i < beam_size && i < prefixes.size(); i++) {
double approx_ctc = prefixes[i]->_score;
// remove word insert:
std::vector<int> output;
prefixes[i]->get_path_vec(output);
size_t prefix_length = output.size();
// remove language model weight:
if (ext_scorer != nullptr) {
// auto words = split_labels(output);
// approx_ctc = approx_ctc - path_length * ext_scorer->beta;
// approx_ctc -= (_lm->get_sent_log_prob(words)) * ext_scorer->alpha;
}
prefixes[i]->_approx_ctc = approx_ctc;
}
// allow for the post processing
std::vector<PathTrie*> space_prefixes;
if (space_prefixes.empty()) {
for (size_t i = 0; i < beam_size && i< prefixes.size(); i++) {
space_prefixes.push_back(prefixes[i]);
}
}
std::sort(space_prefixes.begin(), space_prefixes.end(), prefix_compare);
std::vector<std::pair<double, std::string> > output_vecs;
for (size_t i = 0; i < beam_size && i < space_prefixes.size(); i++) {
std::vector<int> output;
space_prefixes[i]->get_path_vec(output);
// convert index to string
std::string output_str;
for (int j = 0; j < output.size(); j++) {
output_str += vocabulary[output[j]];
}
std::pair<double, std::string> output_pair(space_prefixes[i]->_score,
output_str);
output_vecs.emplace_back(
output_pair
);
}
return output_vecs;
}
std::vector<std::vector<std::pair<double, std::string>>>
ctc_beam_search_decoder_batch(
std::vector<std::vector<std::vector<double>>> probs_split,
int beam_size,
std::vector<std::string> vocabulary,
int blank_id,
int num_processes,
double cutoff_prob,
Scorer *ext_scorer
) {
if (num_processes <= 0) {
std::cout << "num_processes must be nonnegative!" << std::endl;
exit(1);
}
// thread pool
ThreadPool pool(num_processes);
// number of samples
int batch_size = probs_split.size();
// dictionary init
if ( ext_scorer != nullptr) {
if (ext_scorer->_dictionary == nullptr) {
// TODO: init dictionary
ext_scorer->set_char_map(vocabulary);
ext_scorer->fill_dictionary(true);
}
}
// enqueue the tasks of decoding
std::vector<std::future<std::vector<std::pair<double, std::string>>>> res;
for (int i = 0; i < batch_size; i++) {
res.emplace_back(
pool.enqueue(ctc_beam_search_decoder, probs_split[i],
beam_size, vocabulary, blank_id, cutoff_prob, ext_scorer)
);
}
// get decoding results
std::vector<std::vector<std::pair<double, std::string>>> batch_results;
for (int i = 0; i < batch_size; i++) {
batch_results.emplace_back(res[i].get());
}
return batch_results;
}