You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/bin/paddlespeech_server.py

240 lines
8.7 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from typing import List
import uvicorn
from fastapi import FastAPI
from prettytable import PrettyTable
from ..executor import BaseExecutor
from ..util import cli_server_register
from ..util import stats_wrapper
from paddlespeech.cli.log import logger
from paddlespeech.server.engine.engine_pool import init_engine_pool
from paddlespeech.server.restful.api import setup_router as setup_http_router
from paddlespeech.server.utils.config import get_config
from paddlespeech.server.ws.api import setup_router as setup_ws_router
__all__ = ['ServerExecutor', 'ServerStatsExecutor']
app = FastAPI(
title="PaddleSpeech Serving API", description="Api", version="0.0.1")
@cli_server_register(
name='paddlespeech_server.start', description='Start the service')
class ServerExecutor(BaseExecutor):
def __init__(self):
super(ServerExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_server.start', add_help=True)
self.parser.add_argument(
"--config_file",
action="store",
help="yaml file of the app",
default=None,
required=True)
self.parser.add_argument(
"--log_file",
action="store",
help="log file",
default="./log/paddlespeech.log")
def init(self, config) -> bool:
"""system initialization
Args:
config (CfgNode): config object
Returns:
bool:
"""
# init api
api_list = list(engine.split("_")[0] for engine in config.engine_list)
if config.protocol == "websocket":
api_router = setup_ws_router(api_list)
elif config.protocol == "http":
api_router = setup_http_router(api_list)
else:
raise Exception("unsupported protocol")
app.include_router(api_router)
if not init_engine_pool(config):
return False
return True
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
config = get_config(args.config_file)
if self.init(config):
uvicorn.run(app, host=config.host, port=config.port, debug=True)
@stats_wrapper
def __call__(self,
config_file: str="./conf/application.yaml",
log_file: str="./log/paddlespeech.log"):
"""
Python API to call an executor.
"""
config = get_config(config_file)
if self.init(config):
uvicorn.run(app, host=config.host, port=config.port, debug=True)
@cli_server_register(
name='paddlespeech_server.stats',
description='Get the models supported by each speech task in the service.')
class ServerStatsExecutor():
def __init__(self):
super(ServerStatsExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_server.stats', add_help=True)
self.parser.add_argument(
'--task',
type=str,
default=None,
choices=['asr', 'tts', 'cls', 'text', 'vector'],
help='Choose speech task.',
required=True)
self.task_choices = ['asr', 'tts', 'cls', 'text', 'vector']
self.model_name_format = {
'asr': 'Model-Language-Sample Rate',
'tts': 'Model-Language',
'cls': 'Model-Sample Rate',
'text': 'Model-Task-Language',
'vector': 'Model-Sample Rate'
}
def show_support_models(self, pretrained_models: dict):
fields = self.model_name_format[self.task].split("-")
table = PrettyTable(fields)
for key in pretrained_models:
table.add_row(key.split("-"))
print(table)
def execute(self, argv: List[str]) -> bool:
"""
Command line entry.
"""
parser_args = self.parser.parse_args(argv)
self.task = parser_args.task
if self.task not in self.task_choices:
logger.error(
"Please input correct speech task, choices = ['asr', 'tts']")
return False
elif self.task.lower() == 'asr':
try:
from paddlespeech.cli.asr.infer import pretrained_models
logger.info(
"Here is the table of ASR pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
# show ASR static pretrained model
from paddlespeech.server.engine.asr.paddleinference.asr_engine import pretrained_models
logger.info(
"Here is the table of ASR static pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
return True
except BaseException:
logger.error(
"Failed to get the table of ASR pretrained models supported in the service."
)
return False
elif self.task.lower() == 'tts':
try:
from paddlespeech.cli.tts.infer import pretrained_models
logger.info(
"Here is the table of TTS pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
# show TTS static pretrained model
from paddlespeech.server.engine.tts.paddleinference.tts_engine import pretrained_models
logger.info(
"Here is the table of TTS static pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
return True
except BaseException:
logger.error(
"Failed to get the table of TTS pretrained models supported in the service."
)
return False
elif self.task.lower() == 'cls':
try:
from paddlespeech.cli.cls.infer import pretrained_models
logger.info(
"Here is the table of CLS pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
# show CLS static pretrained model
from paddlespeech.server.engine.cls.paddleinference.cls_engine import pretrained_models
logger.info(
"Here is the table of CLS static pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
return True
except BaseException:
logger.error(
"Failed to get the table of CLS pretrained models supported in the service."
)
return False
elif self.task.lower() == 'text':
try:
from paddlespeech.cli.text.infer import pretrained_models
logger.info(
"Here is the table of Text pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
return True
except BaseException:
logger.error(
"Failed to get the table of Text pretrained models supported in the service."
)
return False
elif self.task.lower() == 'vector':
try:
from paddlespeech.cli.vector.infer import pretrained_models
logger.info(
"Here is the table of Vector pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
return True
except BaseException:
logger.error(
"Failed to get the table of Vector pretrained models supported in the service."
)
return False
else:
logger.error(
f"Failed to get the table of {self.task} pretrained models supported in the service."
)
return False