You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/frontend/utility.py

260 lines
7.7 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains data helper functions."""
import codecs
import json
import math
import numpy as np
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
__all__ = [
"load_cmvn", "read_manifest", "rms_to_db", "rms_to_dbfs", "max_dbfs",
"mean_dbfs", "gain_db_to_ratio", "normalize_audio", "SOS", "EOS", "UNK",
"BLANK"
]
IGNORE_ID = -1
SOS = "<sos/eos>"
EOS = SOS
UNK = "<unk>"
BLANK = "<blank>"
def read_manifest(
manifest_path,
max_input_len=float('inf'),
min_input_len=0.0,
max_output_len=float('inf'),
min_output_len=0.0,
max_output_input_ratio=float('inf'),
min_output_input_ratio=0.0, ):
"""Load and parse manifest file.
Args:
manifest_path ([type]): Manifest file to load and parse.
max_input_len ([type], optional): maximum output seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to float('inf').
min_input_len (float, optional): minimum input seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to 0.0.
max_output_len (float, optional): maximum input seq length, in modeling units. Defaults to 500.0.
min_output_len (float, optional): minimum input seq length, in modeling units. Defaults to 0.0.
max_output_input_ratio (float, optional): maximum output seq length/output seq length ratio. Defaults to 10.0.
min_output_input_ratio (float, optional): minimum output seq length/output seq length ratio. Defaults to 0.05.
Raises:
IOError: If failed to parse the manifest.
Returns:
List[dict]: Manifest parsing results.
"""
manifest = []
for json_line in codecs.open(manifest_path, 'r', 'utf-8'):
try:
json_data = json.loads(json_line)
except Exception as e:
raise IOError("Error reading manifest: %s" % str(e))
feat_len = json_data["feat_shape"][
0] if 'feat_shape' in json_data else 1.0
token_len = json_data["token_shape"][
0] if 'token_shape' in json_data else 1.0
conditions = [
feat_len >= min_input_len,
feat_len <= max_input_len,
token_len >= min_output_len,
token_len <= max_output_len,
token_len / feat_len >= min_output_input_ratio,
token_len / feat_len <= max_output_input_ratio,
]
if all(conditions):
manifest.append(json_data)
return manifest
def rms_to_db(rms: float):
"""Root Mean Square to dB.
Args:
rms ([float]): root mean square
Returns:
float: dB
"""
return 20.0 * math.log10(max(1e-16, rms))
def rms_to_dbfs(rms: float):
"""Root Mean Square to dBFS.
https://fireattack.wordpress.com/2017/02/06/replaygain-loudness-normalization-and-applications/
Audio is mix of sine wave, so 1 amp sine wave's Full scale is 0.7071, equal to -3.0103dB.
dB = dBFS + 3.0103
dBFS = db - 3.0103
e.g. 0 dB = -3.0103 dBFS
Args:
rms ([float]): root mean square
Returns:
float: dBFS
"""
return rms_to_db(rms) - 3.0103
def max_dbfs(sample_data: np.ndarray):
"""Peak dBFS based on the maximum energy sample.
Args:
sample_data ([np.ndarray]): float array, [-1, 1].
Returns:
float: dBFS
"""
# Peak dBFS based on the maximum energy sample. Will prevent overdrive if used for normalization.
return rms_to_dbfs(max(abs(np.min(sample_data)), abs(np.max(sample_data))))
def mean_dbfs(sample_data):
"""Peak dBFS based on the RMS energy.
Args:
sample_data ([np.ndarray]): float array, [-1, 1].
Returns:
float: dBFS
"""
return rms_to_dbfs(
math.sqrt(np.mean(np.square(sample_data, dtype=np.float64))))
def gain_db_to_ratio(gain_db: float):
"""dB to ratio
Args:
gain_db (float): gain in dB
Returns:
float: scale in amp
"""
return math.pow(10.0, gain_db / 20.0)
def normalize_audio(sample_data: np.ndarray, dbfs: float=-3.0103):
"""Nomalize audio to dBFS.
Args:
sample_data (np.ndarray): input wave samples, [-1, 1].
dbfs (float, optional): target dBFS. Defaults to -3.0103.
Returns:
np.ndarray: normalized wave
"""
return np.maximum(
np.minimum(sample_data * gain_db_to_ratio(dbfs - max_dbfs(sample_data)),
1.0), -1.0)
def _load_json_cmvn(json_cmvn_file):
""" Load the json format cmvn stats file and calculate cmvn
Args:
json_cmvn_file: cmvn stats file in json format
Returns:
a numpy array of [means, vars]
"""
with open(json_cmvn_file) as f:
cmvn_stats = json.load(f)
means = cmvn_stats['mean_stat']
variance = cmvn_stats['var_stat']
count = cmvn_stats['frame_num']
for i in range(len(means)):
means[i] /= count
variance[i] = variance[i] / count - means[i] * means[i]
if variance[i] < 1.0e-20:
variance[i] = 1.0e-20
variance[i] = 1.0 / math.sqrt(variance[i])
cmvn = np.array([means, variance])
return cmvn
def _load_kaldi_cmvn(kaldi_cmvn_file):
""" Load the kaldi format cmvn stats file and calculate cmvn
Args:
kaldi_cmvn_file: kaldi text style global cmvn file, which
is generated by:
compute-cmvn-stats --binary=false scp:feats.scp global_cmvn
Returns:
a numpy array of [means, vars]
"""
means = []
variance = []
with open(kaldi_cmvn_file, 'r') as fid:
# kaldi binary file start with '\0B'
if fid.read(2) == '\0B':
logger.error('kaldi cmvn binary file is not supported, please '
'recompute it by: compute-cmvn-stats --binary=false '
' scp:feats.scp global_cmvn')
sys.exit(1)
fid.seek(0)
arr = fid.read().split()
assert (arr[0] == '[')
assert (arr[-2] == '0')
assert (arr[-1] == ']')
feat_dim = int((len(arr) - 2 - 2) / 2)
for i in range(1, feat_dim + 1):
means.append(float(arr[i]))
count = float(arr[feat_dim + 1])
for i in range(feat_dim + 2, 2 * feat_dim + 2):
variance.append(float(arr[i]))
for i in range(len(means)):
means[i] /= count
variance[i] = variance[i] / count - means[i] * means[i]
if variance[i] < 1.0e-20:
variance[i] = 1.0e-20
variance[i] = 1.0 / math.sqrt(variance[i])
cmvn = np.array([means, variance])
return cmvn
def load_cmvn(cmvn_file: str, filetype: str):
"""load cmvn from file.
Args:
cmvn_file (str): cmvn path.
filetype (str): file type, optional[npz, json, kaldi].
Raises:
ValueError: file type not support.
Returns:
Tuple[np.ndarray, np.ndarray]: mean, istd
"""
assert filetype in ['npz', 'json', 'kaldi'], filetype
filetype = filetype.lower()
if filetype == "json":
cmvn = _load_json_cmvn(cmvn_file)
elif filetype == "kaldi":
cmvn = _load_kaldi_cmvn(cmvn_file)
else:
raise ValueError(f"cmvn file type no support: {filetype}")
return cmvn[0], cmvn[1]