You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
7.8 KiB
238 lines
7.8 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import logging
|
|
import os
|
|
import sys
|
|
from abc import ABC
|
|
from abc import abstractmethod
|
|
from collections import OrderedDict
|
|
from typing import Any
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Union
|
|
|
|
import paddle
|
|
|
|
from .log import logger
|
|
from .utils import download_and_decompress
|
|
from .utils import MODEL_HOME
|
|
|
|
|
|
class BaseExecutor(ABC):
|
|
"""
|
|
An abstract executor of paddlespeech tasks.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._inputs = OrderedDict()
|
|
self._outputs = OrderedDict()
|
|
self.pretrained_models = OrderedDict()
|
|
self.model_alias = OrderedDict()
|
|
|
|
@abstractmethod
|
|
def _init_from_path(self, *args, **kwargs):
|
|
"""
|
|
Init model and other resources from arguments. This method should be called by `__call__()`.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def preprocess(self, input: Any, *args, **kwargs):
|
|
"""
|
|
Input preprocess and return paddle.Tensor stored in self._inputs.
|
|
Input content can be a text(tts), a file(asr, cls), a stream(not supported yet) or anything needed.
|
|
|
|
Args:
|
|
input (Any): Input text/file/stream or other content.
|
|
"""
|
|
pass
|
|
|
|
@paddle.no_grad()
|
|
@abstractmethod
|
|
def infer(self, *args, **kwargs):
|
|
"""
|
|
Model inference and put results into self._outputs.
|
|
This method get input tensors from self._inputs, and write output tensors into self._outputs.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def postprocess(self, *args, **kwargs) -> Union[str, os.PathLike]:
|
|
"""
|
|
Output postprocess and return results.
|
|
This method get model output from self._outputs and convert it into human-readable results.
|
|
|
|
Returns:
|
|
Union[str, os.PathLike]: Human-readable results such as texts and audio files.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def execute(self, argv: List[str]) -> bool:
|
|
"""
|
|
Command line entry. This method can only be accessed by a command line such as `paddlespeech asr`.
|
|
|
|
Args:
|
|
argv (List[str]): Arguments from command line.
|
|
|
|
Returns:
|
|
int: Result of the command execution. `True` for a success and `False` for a failure.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __call__(self, *arg, **kwargs):
|
|
"""
|
|
Python API to call an executor.
|
|
"""
|
|
pass
|
|
|
|
def get_task_source(self, input_: Union[str, os.PathLike, None]
|
|
) -> Dict[str, Union[str, os.PathLike]]:
|
|
"""
|
|
Get task input source from command line input.
|
|
|
|
Args:
|
|
input_ (Union[str, os.PathLike, None]): Input from command line.
|
|
|
|
Returns:
|
|
Dict[str, Union[str, os.PathLike]]: A dict with ids and inputs.
|
|
"""
|
|
if self._is_job_input(input_):
|
|
ret = self._get_job_contents(input_)
|
|
else:
|
|
ret = OrderedDict()
|
|
|
|
if input_ is None: # Take input from stdin
|
|
for i, line in enumerate(sys.stdin):
|
|
line = line.strip()
|
|
if len(line.split(' ')) == 1:
|
|
ret[str(i + 1)] = line
|
|
elif len(line.split(' ')) == 2:
|
|
id_, info = line.split(' ')
|
|
ret[id_] = info
|
|
else: # No valid input info from one line.
|
|
continue
|
|
else:
|
|
ret[1] = input_
|
|
return ret
|
|
|
|
def process_task_results(self,
|
|
input_: Union[str, os.PathLike, None],
|
|
results: Dict[str, os.PathLike],
|
|
job_dump_result: bool=False):
|
|
"""
|
|
Handling task results and redirect stdout if needed.
|
|
|
|
Args:
|
|
input_ (Union[str, os.PathLike, None]): Input from command line.
|
|
results (Dict[str, os.PathLike]): Task outputs.
|
|
job_dump_result (bool, optional): if True, dumps job results into file. Defaults to False.
|
|
"""
|
|
|
|
if not self._is_job_input(input_) and len(
|
|
results) == 1: # Only one input sample
|
|
raw_text = list(results.values())[0]
|
|
else:
|
|
raw_text = self._format_task_results(results)
|
|
|
|
print(raw_text, end='') # Stdout
|
|
|
|
if self._is_job_input(
|
|
input_) and job_dump_result: # Dump to *.job.done
|
|
try:
|
|
job_output_file = os.path.abspath(input_) + '.done'
|
|
sys.stdout = open(job_output_file, 'w')
|
|
print(raw_text, end='')
|
|
logger.info(f'Results had been saved to: {job_output_file}')
|
|
finally:
|
|
sys.stdout.close()
|
|
|
|
def _is_job_input(self, input_: Union[str, os.PathLike]) -> bool:
|
|
"""
|
|
Check if current input file is a job input or not.
|
|
|
|
Args:
|
|
input_ (Union[str, os.PathLike]): Input file of current task.
|
|
|
|
Returns:
|
|
bool: return `True` for job input, `False` otherwise.
|
|
"""
|
|
return input_ and os.path.isfile(input_) and (input_.endswith('.job') or
|
|
input_.endswith('.txt'))
|
|
|
|
def _get_job_contents(
|
|
self, job_input: os.PathLike) -> Dict[str, Union[str, os.PathLike]]:
|
|
"""
|
|
Read a job input file and return its contents in a dictionary.
|
|
|
|
Args:
|
|
job_input (os.PathLike): The job input file.
|
|
|
|
Returns:
|
|
Dict[str, str]: Contents of job input.
|
|
"""
|
|
job_contents = OrderedDict()
|
|
with open(job_input) as f:
|
|
for line in f:
|
|
line = line.strip()
|
|
if not line:
|
|
continue
|
|
k, v = line.split(' ')
|
|
job_contents[k] = v
|
|
return job_contents
|
|
|
|
def _format_task_results(
|
|
self, results: Dict[str, Union[str, os.PathLike]]) -> str:
|
|
"""
|
|
Convert task results to raw text.
|
|
|
|
Args:
|
|
results (Dict[str, str]): A dictionary of task results.
|
|
|
|
Returns:
|
|
str: A string object contains task results.
|
|
"""
|
|
ret = ''
|
|
for k, v in results.items():
|
|
ret += f'{k} {v}\n'
|
|
return ret
|
|
|
|
def disable_task_loggers(self):
|
|
"""
|
|
Disable all loggers in current task.
|
|
"""
|
|
loggers = [
|
|
logging.getLogger(name) for name in logging.root.manager.loggerDict
|
|
]
|
|
for l in loggers:
|
|
l.disabled = True
|
|
|
|
def _get_pretrained_path(self, tag: str) -> os.PathLike:
|
|
"""
|
|
Download and returns pretrained resources path of current task.
|
|
"""
|
|
support_models = list(self.pretrained_models.keys())
|
|
assert tag in self.pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
|
|
tag, '\n\t\t'.join(support_models))
|
|
|
|
res_path = os.path.join(MODEL_HOME, tag)
|
|
decompressed_path = download_and_decompress(self.pretrained_models[tag],
|
|
res_path)
|
|
decompressed_path = os.path.abspath(decompressed_path)
|
|
logger.info(
|
|
'Use pretrained model stored in: {}'.format(decompressed_path))
|
|
|
|
return decompressed_path
|