492 lines
18 KiB
492 lines
18 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
import math
|
|
from typing import Any
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
from paddlespeech.t2s.modules.activation import get_activation
|
|
from paddlespeech.t2s.modules.nets_utils import initialize
|
|
from paddlespeech.t2s.modules.residual_block import WaveNetResidualBlock as ResidualBlock
|
|
from paddlespeech.t2s.modules.upsample import ConvInUpsampleNet
|
|
|
|
|
|
class PWGGenerator(nn.Layer):
|
|
"""Wave Generator for Parallel WaveGAN
|
|
|
|
Args:
|
|
in_channels (int, optional):
|
|
Number of channels of the input waveform, by default 1
|
|
out_channels (int, optional):
|
|
Number of channels of the output waveform, by default 1
|
|
kernel_size (int, optional):
|
|
Kernel size of the residual blocks inside, by default 3
|
|
layers (int, optional):
|
|
Number of residual blocks inside, by default 30
|
|
stacks (int, optional):
|
|
The number of groups to split the residual blocks into, by default 3
|
|
Within each group, the dilation of the residual block grows exponentially.
|
|
residual_channels (int, optional):
|
|
Residual channel of the residual blocks, by default 64
|
|
gate_channels (int, optional):
|
|
Gate channel of the residual blocks, by default 128
|
|
skip_channels (int, optional):
|
|
Skip channel of the residual blocks, by default 64
|
|
aux_channels (int, optional):
|
|
Auxiliary channel of the residual blocks, by default 80
|
|
aux_context_window (int, optional):
|
|
The context window size of the first convolution applied to the auxiliary input, by default 2
|
|
dropout (float, optional):
|
|
Dropout of the residual blocks, by default 0.
|
|
bias (bool, optional):
|
|
Whether to use bias in residual blocks, by default True
|
|
use_weight_norm (bool, optional):
|
|
Whether to use weight norm in all convolutions, by default True
|
|
use_causal_conv (bool, optional):
|
|
Whether to use causal padding in the upsample network and residual blocks, by default False
|
|
upsample_scales (List[int], optional):
|
|
Upsample scales of the upsample network, by default [4, 4, 4, 4]
|
|
nonlinear_activation (Optional[str], optional):
|
|
Non linear activation in upsample network, by default None
|
|
nonlinear_activation_params (Dict[str, Any], optional):
|
|
Parameters passed to the linear activation in the upsample network, by default {}
|
|
interpolate_mode (str, optional):
|
|
Interpolation mode of the upsample network, by default "nearest"
|
|
freq_axis_kernel_size (int, optional):
|
|
Kernel size along the frequency axis of the upsample network, by default 1
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int=1,
|
|
out_channels: int=1,
|
|
kernel_size: int=3,
|
|
layers: int=30,
|
|
stacks: int=3,
|
|
residual_channels: int=64,
|
|
gate_channels: int=128,
|
|
skip_channels: int=64,
|
|
aux_channels: int=80,
|
|
aux_context_window: int=2,
|
|
dropout: float=0.,
|
|
bias: bool=True,
|
|
use_weight_norm: bool=True,
|
|
use_causal_conv: bool=False,
|
|
upsample_scales: List[int]=[4, 4, 4, 4],
|
|
nonlinear_activation: Optional[str]=None,
|
|
nonlinear_activation_params: Dict[str, Any]={},
|
|
interpolate_mode: str="nearest",
|
|
freq_axis_kernel_size: int=1,
|
|
init_type: str="xavier_uniform", ):
|
|
super().__init__()
|
|
|
|
# initialize parameters
|
|
initialize(self, init_type)
|
|
|
|
# for compatibility
|
|
if nonlinear_activation:
|
|
nonlinear_activation = nonlinear_activation.lower()
|
|
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.aux_channels = aux_channels
|
|
self.aux_context_window = aux_context_window
|
|
self.layers = layers
|
|
self.stacks = stacks
|
|
self.kernel_size = kernel_size
|
|
|
|
assert layers % stacks == 0
|
|
layers_per_stack = layers // stacks
|
|
|
|
self.first_conv = nn.Conv1D(
|
|
in_channels, residual_channels, 1, bias_attr=True)
|
|
self.upsample_net = ConvInUpsampleNet(
|
|
upsample_scales=upsample_scales,
|
|
nonlinear_activation=nonlinear_activation,
|
|
nonlinear_activation_params=nonlinear_activation_params,
|
|
interpolate_mode=interpolate_mode,
|
|
freq_axis_kernel_size=freq_axis_kernel_size,
|
|
aux_channels=aux_channels,
|
|
aux_context_window=aux_context_window,
|
|
use_causal_conv=use_causal_conv)
|
|
self.upsample_factor = np.prod(upsample_scales)
|
|
|
|
self.conv_layers = nn.LayerList()
|
|
for layer in range(layers):
|
|
dilation = 2**(layer % layers_per_stack)
|
|
conv = ResidualBlock(
|
|
kernel_size=kernel_size,
|
|
residual_channels=residual_channels,
|
|
gate_channels=gate_channels,
|
|
skip_channels=skip_channels,
|
|
aux_channels=aux_channels,
|
|
dilation=dilation,
|
|
dropout=dropout,
|
|
bias=bias,
|
|
use_causal_conv=use_causal_conv)
|
|
self.conv_layers.append(conv)
|
|
|
|
self.last_conv_layers = nn.Sequential(nn.ReLU(),
|
|
nn.Conv1D(
|
|
skip_channels,
|
|
skip_channels,
|
|
1,
|
|
bias_attr=True),
|
|
nn.ReLU(),
|
|
nn.Conv1D(
|
|
skip_channels,
|
|
out_channels,
|
|
1,
|
|
bias_attr=True))
|
|
|
|
if use_weight_norm:
|
|
self.apply_weight_norm()
|
|
|
|
def forward(self, x, c):
|
|
"""Generate waveform.
|
|
|
|
Args:
|
|
x(Tensor):
|
|
Shape (N, C_in, T), The input waveform.
|
|
c(Tensor):
|
|
Shape (N, C_aux, T'). The auxiliary input (e.g. spectrogram).
|
|
It is upsampled to match the time resolution of the input.
|
|
|
|
Returns:
|
|
Tensor: Shape (N, C_out, T), the generated waveform.
|
|
"""
|
|
c = self.upsample_net(c)
|
|
assert c.shape[-1] == x.shape[-1]
|
|
|
|
x = self.first_conv(x)
|
|
skips = 0
|
|
for f in self.conv_layers:
|
|
x, s = f(x, c)
|
|
skips += s
|
|
skips *= math.sqrt(1.0 / len(self.conv_layers))
|
|
|
|
x = self.last_conv_layers(skips)
|
|
return x
|
|
|
|
def apply_weight_norm(self):
|
|
"""Recursively apply weight normalization to all the Convolution layers
|
|
in the sublayers.
|
|
"""
|
|
|
|
def _apply_weight_norm(layer):
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
|
nn.utils.weight_norm(layer)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def remove_weight_norm(self):
|
|
"""Recursively remove weight normalization from all the Convolution
|
|
layers in the sublayers.
|
|
"""
|
|
|
|
def _remove_weight_norm(layer):
|
|
try:
|
|
nn.utils.remove_weight_norm(layer)
|
|
except ValueError:
|
|
pass
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
def inference(self, c=None):
|
|
"""Waveform generation. This function is used for single instance inference.
|
|
|
|
Args:
|
|
c(Tensor, optional, optional):
|
|
Shape (T', C_aux), the auxiliary input, by default None
|
|
x(Tensor, optional):
|
|
Shape (T, C_in), the noise waveform, by default None
|
|
|
|
Returns:
|
|
Tensor: Shape (T, C_out), the generated waveform
|
|
"""
|
|
# when to static, can not input x, see https://github.com/PaddlePaddle/Parakeet/pull/132/files
|
|
x = paddle.randn(
|
|
[1, self.in_channels, paddle.shape(c)[0] * self.upsample_factor])
|
|
c = paddle.transpose(c, [1, 0]).unsqueeze(0) # pseudo batch
|
|
c = nn.Pad1D(self.aux_context_window, mode='replicate')(c)
|
|
out = self(x, c).squeeze(0).transpose([1, 0])
|
|
return out
|
|
|
|
|
|
class PWGDiscriminator(nn.Layer):
|
|
"""A convolutional discriminator for audio.
|
|
|
|
Args:
|
|
in_channels (int, optional):
|
|
Number of channels of the input audio, by default 1
|
|
out_channels (int, optional):
|
|
Output feature size, by default 1
|
|
kernel_size (int, optional):
|
|
Kernel size of convolutional sublayers, by default 3
|
|
layers (int, optional):
|
|
Number of layers, by default 10
|
|
conv_channels (int, optional):
|
|
Feature size of the convolutional sublayers, by default 64
|
|
dilation_factor (int, optional):
|
|
The factor with which dilation of each convolutional sublayers grows
|
|
exponentially if it is greater than 1, else the dilation of each convolutional sublayers grows linearly,
|
|
by default 1
|
|
nonlinear_activation (str, optional):
|
|
The activation after each convolutional sublayer, by default "leakyrelu"
|
|
nonlinear_activation_params (Dict[str, Any], optional):
|
|
The parameters passed to the activation's initializer, by default {"negative_slope": 0.2}
|
|
bias (bool, optional):
|
|
Whether to use bias in convolutional sublayers, by default True
|
|
use_weight_norm (bool, optional):
|
|
Whether to use weight normalization at all convolutional sublayers, by default True
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int=1,
|
|
out_channels: int=1,
|
|
kernel_size: int=3,
|
|
layers: int=10,
|
|
conv_channels: int=64,
|
|
dilation_factor: int=1,
|
|
nonlinear_activation: str="leakyrelu",
|
|
nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2},
|
|
bias: bool=True,
|
|
use_weight_norm: bool=True,
|
|
init_type: str="xavier_uniform", ):
|
|
super().__init__()
|
|
|
|
# initialize parameters
|
|
initialize(self, init_type)
|
|
# for compatibility
|
|
if nonlinear_activation:
|
|
nonlinear_activation = nonlinear_activation.lower()
|
|
|
|
assert kernel_size % 2 == 1
|
|
assert dilation_factor > 0
|
|
conv_layers = []
|
|
conv_in_channels = in_channels
|
|
for i in range(layers - 1):
|
|
if i == 0:
|
|
dilation = 1
|
|
else:
|
|
dilation = i if dilation_factor == 1 else dilation_factor**i
|
|
conv_in_channels = conv_channels
|
|
padding = (kernel_size - 1) // 2 * dilation
|
|
conv_layer = nn.Conv1D(
|
|
conv_in_channels,
|
|
conv_channels,
|
|
kernel_size,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias_attr=bias)
|
|
nonlinear = get_activation(nonlinear_activation,
|
|
**nonlinear_activation_params)
|
|
conv_layers.append(conv_layer)
|
|
conv_layers.append(nonlinear)
|
|
padding = (kernel_size - 1) // 2
|
|
last_conv = nn.Conv1D(
|
|
conv_in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
padding=padding,
|
|
bias_attr=bias)
|
|
conv_layers.append(last_conv)
|
|
self.conv_layers = nn.Sequential(*conv_layers)
|
|
|
|
if use_weight_norm:
|
|
self.apply_weight_norm()
|
|
|
|
def forward(self, x):
|
|
"""
|
|
|
|
Args:
|
|
x (Tensor):
|
|
Shape (N, in_channels, num_samples), the input audio.
|
|
|
|
Returns:
|
|
Tensor: Shape (N, out_channels, num_samples), the predicted logits.
|
|
"""
|
|
return self.conv_layers(x)
|
|
|
|
def apply_weight_norm(self):
|
|
def _apply_weight_norm(layer):
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
|
nn.utils.weight_norm(layer)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def remove_weight_norm(self):
|
|
def _remove_weight_norm(layer):
|
|
try:
|
|
nn.utils.remove_weight_norm(layer)
|
|
except ValueError:
|
|
pass
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
|
|
class ResidualPWGDiscriminator(nn.Layer):
|
|
"""A wavenet-style discriminator for audio.
|
|
|
|
Args:
|
|
in_channels (int, optional):
|
|
Number of channels of the input audio, by default 1
|
|
out_channels (int, optional):
|
|
Output feature size, by default 1
|
|
kernel_size (int, optional):
|
|
Kernel size of residual blocks, by default 3
|
|
layers (int, optional):
|
|
Number of residual blocks, by default 30
|
|
stacks (int, optional):
|
|
Number of groups of residual blocks, within which the dilation
|
|
of each residual blocks grows exponentially, by default 3
|
|
residual_channels (int, optional):
|
|
Residual channels of residual blocks, by default 64
|
|
gate_channels (int, optional):
|
|
Gate channels of residual blocks, by default 128
|
|
skip_channels (int, optional):
|
|
Skip channels of residual blocks, by default 64
|
|
dropout (float, optional):
|
|
Dropout probability of residual blocks, by default 0.
|
|
bias (bool, optional):
|
|
Whether to use bias in residual blocks, by default True
|
|
use_weight_norm (bool, optional):
|
|
Whether to use weight normalization in all convolutional layers, by default True
|
|
use_causal_conv (bool, optional):
|
|
Whether to use causal convolution in residual blocks, by default False
|
|
nonlinear_activation (str, optional):
|
|
Activation after convolutions other than those in residual blocks, by default "leakyrelu"
|
|
nonlinear_activation_params (Dict[str, Any], optional):
|
|
Parameters to pass to the activation, by default {"negative_slope": 0.2}
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int=1,
|
|
out_channels: int=1,
|
|
kernel_size: int=3,
|
|
layers: int=30,
|
|
stacks: int=3,
|
|
residual_channels: int=64,
|
|
gate_channels: int=128,
|
|
skip_channels: int=64,
|
|
dropout: float=0.,
|
|
bias: bool=True,
|
|
use_weight_norm: bool=True,
|
|
use_causal_conv: bool=False,
|
|
nonlinear_activation: str="leakyrelu",
|
|
nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2},
|
|
init_type: str="xavier_uniform", ):
|
|
super().__init__()
|
|
|
|
# initialize parameters
|
|
initialize(self, init_type)
|
|
|
|
# for compatibility
|
|
if nonlinear_activation:
|
|
nonlinear_activation = nonlinear_activation.lower()
|
|
|
|
assert kernel_size % 2 == 1
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.layers = layers
|
|
self.stacks = stacks
|
|
self.kernel_size = kernel_size
|
|
|
|
assert layers % stacks == 0
|
|
layers_per_stack = layers // stacks
|
|
|
|
self.first_conv = nn.Sequential(
|
|
nn.Conv1D(in_channels, residual_channels, 1, bias_attr=True),
|
|
get_activation(nonlinear_activation, **nonlinear_activation_params))
|
|
|
|
self.conv_layers = nn.LayerList()
|
|
for layer in range(layers):
|
|
dilation = 2**(layer % layers_per_stack)
|
|
conv = ResidualBlock(
|
|
kernel_size=kernel_size,
|
|
residual_channels=residual_channels,
|
|
gate_channels=gate_channels,
|
|
skip_channels=skip_channels,
|
|
aux_channels=None, # no auxiliary input
|
|
dropout=dropout,
|
|
dilation=dilation,
|
|
bias=bias,
|
|
use_causal_conv=use_causal_conv)
|
|
self.conv_layers.append(conv)
|
|
|
|
self.last_conv_layers = nn.Sequential(
|
|
get_activation(nonlinear_activation, **nonlinear_activation_params),
|
|
nn.Conv1D(skip_channels, skip_channels, 1, bias_attr=True),
|
|
get_activation(nonlinear_activation, **nonlinear_activation_params),
|
|
nn.Conv1D(skip_channels, out_channels, 1, bias_attr=True))
|
|
|
|
if use_weight_norm:
|
|
self.apply_weight_norm()
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x(Tensor):
|
|
Shape (N, in_channels, num_samples), the input audio.↩
|
|
|
|
Returns:
|
|
Tensor: Shape (N, out_channels, num_samples), the predicted logits.
|
|
"""
|
|
x = self.first_conv(x)
|
|
skip = 0
|
|
for f in self.conv_layers:
|
|
x, h = f(x, None)
|
|
skip += h
|
|
skip *= math.sqrt(1 / len(self.conv_layers))
|
|
|
|
x = skip
|
|
x = self.last_conv_layers(x)
|
|
return x
|
|
|
|
def apply_weight_norm(self):
|
|
def _apply_weight_norm(layer):
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
|
nn.utils.weight_norm(layer)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def remove_weight_norm(self):
|
|
def _remove_weight_norm(layer):
|
|
try:
|
|
nn.utils.remove_weight_norm(layer)
|
|
except ValueError:
|
|
pass
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
|
|
class PWGInference(nn.Layer):
|
|
def __init__(self, normalizer, pwg_generator):
|
|
super().__init__()
|
|
self.normalizer = normalizer
|
|
self.pwg_generator = pwg_generator
|
|
|
|
def forward(self, logmel):
|
|
normalized_mel = self.normalizer(logmel)
|
|
wav = self.pwg_generator.inference(normalized_mel)
|
|
return wav
|