You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/io/collator_st.py

666 lines
26 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
from collections import namedtuple
from typing import Optional
import kaldiio
import numpy as np
from yacs.config import CfgNode
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
from deepspeech.frontend.featurizer.speech_featurizer import SpeechFeaturizer
from deepspeech.frontend.featurizer.text_featurizer import TextFeaturizer
from deepspeech.frontend.normalizer import FeatureNormalizer
from deepspeech.frontend.speech import SpeechSegment
from deepspeech.frontend.utility import IGNORE_ID
from deepspeech.io.utility import pad_sequence
from deepspeech.utils.log import Log
__all__ = ["SpeechCollator", "KaldiPrePorocessedCollator"]
logger = Log(__name__).getlog()
# namedtupe need global for pickle.
TarLocalData = namedtuple('TarLocalData', ['tar2info', 'tar2object'])
class SpeechCollator():
@classmethod
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
default = CfgNode(
dict(
augmentation_config="",
random_seed=0,
mean_std_filepath="",
unit_type="char",
vocab_filepath="",
spm_model_prefix="",
specgram_type='linear', # 'linear', 'mfcc', 'fbank'
feat_dim=0, # 'mfcc', 'fbank'
delta_delta=False, # 'mfcc', 'fbank'
stride_ms=10.0, # ms
window_ms=20.0, # ms
n_fft=None, # fft points
max_freq=None, # None for samplerate/2
target_sample_rate=16000, # target sample rate
use_dB_normalization=True,
target_dB=-20,
dither=1.0, # feature dither
keep_transcription_text=False))
if config is not None:
config.merge_from_other_cfg(default)
return default
@classmethod
def from_config(cls, config):
"""Build a SpeechCollator object from a config.
Args:
config (yacs.config.CfgNode): configs object.
Returns:
SpeechCollator: collator object.
"""
assert 'augmentation_config' in config.collator
assert 'keep_transcription_text' in config.collator
assert 'mean_std_filepath' in config.collator
assert 'vocab_filepath' in config.collator
assert 'specgram_type' in config.collator
assert 'n_fft' in config.collator
assert config.collator
if isinstance(config.collator.augmentation_config, (str, bytes)):
if config.collator.augmentation_config:
aug_file = io.open(
config.collator.augmentation_config,
mode='r',
encoding='utf8')
else:
aug_file = io.StringIO(initial_value='{}', newline='')
else:
aug_file = config.collator.augmentation_config
assert isinstance(aug_file, io.StringIO)
speech_collator = cls(
aug_file=aug_file,
random_seed=0,
mean_std_filepath=config.collator.mean_std_filepath,
unit_type=config.collator.unit_type,
vocab_filepath=config.collator.vocab_filepath,
spm_model_prefix=config.collator.spm_model_prefix,
specgram_type=config.collator.specgram_type,
feat_dim=config.collator.feat_dim,
delta_delta=config.collator.delta_delta,
stride_ms=config.collator.stride_ms,
window_ms=config.collator.window_ms,
n_fft=config.collator.n_fft,
max_freq=config.collator.max_freq,
target_sample_rate=config.collator.target_sample_rate,
use_dB_normalization=config.collator.use_dB_normalization,
target_dB=config.collator.target_dB,
dither=config.collator.dither,
keep_transcription_text=config.collator.keep_transcription_text)
return speech_collator
def __init__(
self,
aug_file,
mean_std_filepath,
vocab_filepath,
spm_model_prefix,
random_seed=0,
unit_type="char",
specgram_type='linear', # 'linear', 'mfcc', 'fbank'
feat_dim=0, # 'mfcc', 'fbank'
delta_delta=False, # 'mfcc', 'fbank'
stride_ms=10.0, # ms
window_ms=20.0, # ms
n_fft=None, # fft points
max_freq=None, # None for samplerate/2
target_sample_rate=16000, # target sample rate
use_dB_normalization=True,
target_dB=-20,
dither=1.0,
keep_transcription_text=True):
"""SpeechCollator Collator
Args:
unit_type(str): token unit type, e.g. char, word, spm
vocab_filepath (str): vocab file path.
mean_std_filepath (str): mean and std file path, which suffix is *.npy
spm_model_prefix (str): spm model prefix, need if `unit_type` is spm.
augmentation_config (str, optional): augmentation json str. Defaults to '{}'.
stride_ms (float, optional): stride size in ms. Defaults to 10.0.
window_ms (float, optional): window size in ms. Defaults to 20.0.
n_fft (int, optional): fft points for rfft. Defaults to None.
max_freq (int, optional): max cut freq. Defaults to None.
target_sample_rate (int, optional): target sample rate which used for training. Defaults to 16000.
specgram_type (str, optional): 'linear', 'mfcc' or 'fbank'. Defaults to 'linear'.
feat_dim (int, optional): audio feature dim, using by 'mfcc' or 'fbank'. Defaults to None.
delta_delta (bool, optional): audio feature with delta-delta, using by 'fbank' or 'mfcc'. Defaults to False.
use_dB_normalization (bool, optional): do dB normalization. Defaults to True.
target_dB (int, optional): target dB. Defaults to -20.
random_seed (int, optional): for random generator. Defaults to 0.
keep_transcription_text (bool, optional): True, when not in training mode, will not do tokenizer; Defaults to False.
if ``keep_transcription_text`` is False, text is token ids else is raw string.
Do augmentations
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one batch.
"""
self._keep_transcription_text = keep_transcription_text
self._local_data = TarLocalData(tar2info={}, tar2object={})
self._augmentation_pipeline = AugmentationPipeline(
augmentation_config=aug_file.read(), random_seed=random_seed)
self._normalizer = FeatureNormalizer(
mean_std_filepath) if mean_std_filepath else None
self._stride_ms = stride_ms
self._target_sample_rate = target_sample_rate
self._speech_featurizer = SpeechFeaturizer(
unit_type=unit_type,
vocab_filepath=vocab_filepath,
spm_model_prefix=spm_model_prefix,
specgram_type=specgram_type,
feat_dim=feat_dim,
delta_delta=delta_delta,
stride_ms=stride_ms,
window_ms=window_ms,
n_fft=n_fft,
max_freq=max_freq,
target_sample_rate=target_sample_rate,
use_dB_normalization=use_dB_normalization,
target_dB=target_dB,
dither=dither)
def _parse_tar(self, file):
"""Parse a tar file to get a tarfile object
and a map containing tarinfoes
"""
result = {}
f = tarfile.open(file)
for tarinfo in f.getmembers():
result[tarinfo.name] = tarinfo
return f, result
def _subfile_from_tar(self, file):
"""Get subfile object from tar.
It will return a subfile object from tar file
and cached tar file info for next reading request.
"""
tarpath, filename = file.split(':', 1)[1].split('#', 1)
if 'tar2info' not in self._local_data.__dict__:
self._local_data.tar2info = {}
if 'tar2object' not in self._local_data.__dict__:
self._local_data.tar2object = {}
if tarpath not in self._local_data.tar2info:
object, infoes = self._parse_tar(tarpath)
self._local_data.tar2info[tarpath] = infoes
self._local_data.tar2object[tarpath] = object
return self._local_data.tar2object[tarpath].extractfile(
self._local_data.tar2info[tarpath][filename])
def process_utterance(self, audio_file, translation):
"""Load, augment, featurize and normalize for speech data.
:param audio_file: Filepath or file object of audio file.
:type audio_file: str | file
:param translation: translation text.
:type translation: str
:return: Tuple of audio feature tensor and data of translation part,
where translation part could be token ids or text.
:rtype: tuple of (2darray, list)
"""
if isinstance(audio_file, str) and audio_file.startswith('tar:'):
speech_segment = SpeechSegment.from_file(
self._subfile_from_tar(audio_file), translation)
else:
speech_segment = SpeechSegment.from_file(audio_file, translation)
# audio augment
self._augmentation_pipeline.transform_audio(speech_segment)
specgram, translation_part = self._speech_featurizer.featurize(
speech_segment, self._keep_transcription_text)
if self._normalizer:
specgram = self._normalizer.apply(specgram)
# specgram augment
specgram = self._augmentation_pipeline.transform_feature(specgram)
specgram = specgram.transpose([1, 0])
return specgram, translation_part
def __call__(self, batch):
"""batch examples
Args:
batch ([List]): batch is (audio, text)
audio (np.ndarray) shape (D, T)
text (List[int] or str): shape (U,)
Returns:
tuple(audio, text, audio_lens, text_lens): batched data.
audio : (B, Tmax, D)
audio_lens: (B)
text : (B, Umax)
text_lens: (B)
"""
audios = []
audio_lens = []
texts = []
text_lens = []
utts = []
for utt, audio, text in batch:
audio, text = self.process_utterance(audio, text)
#utt
utts.append(utt)
# audio
audios.append(audio) # [T, D]
audio_lens.append(audio.shape[0])
# text
# for training, text is token ids
# else text is string, convert to unicode ord
tokens = []
if self._keep_transcription_text:
assert isinstance(text, str), (type(text), text)
tokens = [ord(t) for t in text]
else:
tokens = text # token ids
tokens = tokens if isinstance(tokens, np.ndarray) else np.array(
tokens, dtype=np.int64)
texts.append(tokens)
text_lens.append(tokens.shape[0])
padded_audios = pad_sequence(
audios, padding_value=0.0).astype(np.float32) #[B, T, D]
audio_lens = np.array(audio_lens).astype(np.int64)
padded_texts = pad_sequence(
texts, padding_value=IGNORE_ID).astype(np.int64)
text_lens = np.array(text_lens).astype(np.int64)
return utts, padded_audios, audio_lens, padded_texts, text_lens
@property
def manifest(self):
return self._manifest
@property
def vocab_size(self):
return self._speech_featurizer.vocab_size
@property
def vocab_list(self):
return self._speech_featurizer.vocab_list
@property
def vocab_dict(self):
return self._speech_featurizer.vocab_dict
@property
def text_feature(self):
return self._speech_featurizer.text_feature
@property
def feature_size(self):
return self._speech_featurizer.feature_size
@property
def stride_ms(self):
return self._speech_featurizer.stride_ms
class TripletSpeechCollator(SpeechCollator):
def process_utterance(self, audio_file, translation, transcript):
"""Load, augment, featurize and normalize for speech data.
:param audio_file: Filepath or file object of audio file.
:type audio_file: str | file
:param translation: translation text.
:type translation: str
:return: Tuple of audio feature tensor and data of translation part,
where translation part could be token ids or text.
:rtype: tuple of (2darray, list)
"""
if isinstance(audio_file, str) and audio_file.startswith('tar:'):
speech_segment = SpeechSegment.from_file(
self._subfile_from_tar(audio_file), translation)
else:
speech_segment = SpeechSegment.from_file(audio_file, translation)
# audio augment
self._augmentation_pipeline.transform_audio(speech_segment)
specgram, translation_part = self._speech_featurizer.featurize(
speech_segment, self._keep_transcription_text)
transcript_part = self._speech_featurizer._text_featurizer.featurize(
transcript)
if self._normalizer:
specgram = self._normalizer.apply(specgram)
# specgram augment
specgram = self._augmentation_pipeline.transform_feature(specgram)
specgram = specgram.transpose([1, 0])
return specgram, translation_part, transcript_part
def __call__(self, batch):
"""batch examples
Args:
batch ([List]): batch is (audio, text)
audio (np.ndarray) shape (D, T)
text (List[int] or str): shape (U,)
Returns:
tuple(audio, text, audio_lens, text_lens): batched data.
audio : (B, Tmax, D)
audio_lens: (B)
text : (B, Umax)
text_lens: (B)
"""
audios = []
audio_lens = []
translation_text = []
translation_text_lens = []
transcription_text = []
transcription_text_lens = []
utts = []
for utt, audio, translation, transcription in batch:
audio, translation, transcription = self.process_utterance(
audio, translation, transcription)
#utt
utts.append(utt)
# audio
audios.append(audio) # [T, D]
audio_lens.append(audio.shape[0])
# text
# for training, text is token ids
# else text is string, convert to unicode ord
tokens = [[], []]
for idx, text in enumerate([translation, transcription]):
if self._keep_transcription_text:
assert isinstance(text, str), (type(text), text)
tokens[idx] = [ord(t) for t in text]
else:
tokens[idx] = text # token ids
tokens[idx] = tokens[idx] if isinstance(
tokens[idx], np.ndarray) else np.array(
tokens[idx], dtype=np.int64)
translation_text.append(tokens[0])
translation_text_lens.append(tokens[0].shape[0])
transcription_text.append(tokens[1])
transcription_text_lens.append(tokens[1].shape[0])
padded_audios = pad_sequence(
audios, padding_value=0.0).astype(np.float32) #[B, T, D]
audio_lens = np.array(audio_lens).astype(np.int64)
padded_translation = pad_sequence(
translation_text, padding_value=IGNORE_ID).astype(np.int64)
translation_lens = np.array(translation_text_lens).astype(np.int64)
padded_transcription = pad_sequence(
transcription_text, padding_value=IGNORE_ID).astype(np.int64)
transcription_lens = np.array(transcription_text_lens).astype(np.int64)
return utts, padded_audios, audio_lens, (
padded_translation, padded_transcription), (translation_lens,
transcription_lens)
class KaldiPrePorocessedCollator(SpeechCollator):
@classmethod
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
default = CfgNode(
dict(
augmentation_config="",
random_seed=0,
unit_type="char",
vocab_filepath="",
spm_model_prefix="",
feat_dim=0,
stride_ms=10.0,
keep_transcription_text=False))
if config is not None:
config.merge_from_other_cfg(default)
return default
@classmethod
def from_config(cls, config):
"""Build a SpeechCollator object from a config.
Args:
config (yacs.config.CfgNode): configs object.
Returns:
SpeechCollator: collator object.
"""
assert 'augmentation_config' in config.collator
assert 'keep_transcription_text' in config.collator
assert 'vocab_filepath' in config.collator
assert config.collator
if isinstance(config.collator.augmentation_config, (str, bytes)):
if config.collator.augmentation_config:
aug_file = io.open(
config.collator.augmentation_config,
mode='r',
encoding='utf8')
else:
aug_file = io.StringIO(initial_value='{}', newline='')
else:
aug_file = config.collator.augmentation_config
assert isinstance(aug_file, io.StringIO)
speech_collator = cls(
aug_file=aug_file,
random_seed=0,
unit_type=config.collator.unit_type,
vocab_filepath=config.collator.vocab_filepath,
spm_model_prefix=config.collator.spm_model_prefix,
feat_dim=config.collator.feat_dim,
stride_ms=config.collator.stride_ms,
keep_transcription_text=config.collator.keep_transcription_text)
return speech_collator
def __init__(self,
aug_file,
vocab_filepath,
spm_model_prefix,
random_seed=0,
unit_type="char",
feat_dim=0,
stride_ms=10.0,
keep_transcription_text=True):
"""SpeechCollator Collator
Args:
unit_type(str): token unit type, e.g. char, word, spm
vocab_filepath (str): vocab file path.
spm_model_prefix (str): spm model prefix, need if `unit_type` is spm.
augmentation_config (str, optional): augmentation json str. Defaults to '{}'.
random_seed (int, optional): for random generator. Defaults to 0.
keep_transcription_text (bool, optional): True, when not in training mode, will not do tokenizer; Defaults to False.
if ``keep_transcription_text`` is False, text is token ids else is raw string.
Do augmentations
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one batch.
"""
self._keep_transcription_text = keep_transcription_text
self._feat_dim = feat_dim
self._stride_ms = stride_ms
self._local_data = TarLocalData(tar2info={}, tar2object={})
self._augmentation_pipeline = AugmentationPipeline(
augmentation_config=aug_file.read(), random_seed=random_seed)
self._text_featurizer = TextFeaturizer(unit_type, vocab_filepath,
spm_model_prefix)
def process_utterance(self, audio_file, translation):
"""Load, augment, featurize and normalize for speech data.
:param audio_file: Filepath or file object of kaldi processed feature.
:type audio_file: str | file
:param translation: Translation text.
:type translation: str
:return: Tuple of audio feature tensor and data of translation part,
where translation part could be token ids or text.
:rtype: tuple of (2darray, list)
"""
specgram = kaldiio.load_mat(audio_file)
specgram = specgram.transpose([1, 0])
assert specgram.shape[
0] == self._feat_dim, 'expect feat dim {}, but got {}'.format(
self._feat_dim, specgram.shape[0])
# specgram augment
specgram = self._augmentation_pipeline.transform_feature(specgram)
specgram = specgram.transpose([1, 0])
if self._keep_transcription_text:
return specgram, translation
else:
text_ids = self._text_featurizer.featurize(translation)
return specgram, text_ids
@property
def manifest(self):
return self._manifest
@property
def vocab_size(self):
return self._text_featurizer.vocab_size
@property
def vocab_list(self):
return self._text_featurizer.vocab_list
@property
def vocab_dict(self):
return self._text_featurizer.vocab_dict
@property
def text_feature(self):
return self._text_featurizer
@property
def feature_size(self):
return self._feat_dim
@property
def stride_ms(self):
return self._stride_ms
class TripletKaldiPrePorocessedCollator(KaldiPrePorocessedCollator):
def process_utterance(self, audio_file, translation, transcript):
"""Load, augment, featurize and normalize for speech data.
:param audio_file: Filepath or file object of kali processed feature.
:type audio_file: str | file
:param translation: Translation text.
:type translation: str
:param transcript: Transcription text.
:type transcript: str
:return: Tuple of audio feature tensor and data of translation and transcription parts,
where translation and transcription parts could be token ids or text.
:rtype: tuple of (2darray, (list, list))
"""
specgram = kaldiio.load_mat(audio_file)
specgram = specgram.transpose([1, 0])
assert specgram.shape[
0] == self._feat_dim, 'expect feat dim {}, but got {}'.format(
self._feat_dim, specgram.shape[0])
# specgram augment
specgram = self._augmentation_pipeline.transform_feature(specgram)
specgram = specgram.transpose([1, 0])
if self._keep_transcription_text:
return specgram, translation, transcript
else:
translation_text_ids = self._text_featurizer.featurize(translation)
transcript_text_ids = self._text_featurizer.featurize(transcript)
return specgram, translation_text_ids, transcript_text_ids
def __call__(self, batch):
"""batch examples
Args:
batch ([List]): batch is (audio, text)
audio (np.ndarray) shape (D, T)
translation (List[int] or str): shape (U,)
transcription (List[int] or str): shape (V,)
Returns:
tuple(audio, text, audio_lens, text_lens): batched data.
audio : (B, Tmax, D)
audio_lens: (B)
translation_text : (B, Umax)
translation_text_lens: (B)
transcription_text : (B, Vmax)
transcription_text_lens: (B)
"""
audios = []
audio_lens = []
translation_text = []
translation_text_lens = []
transcription_text = []
transcription_text_lens = []
utts = []
for utt, audio, translation, transcription in batch:
audio, translation, transcription = self.process_utterance(
audio, translation, transcription)
#utt
utts.append(utt)
# audio
audios.append(audio) # [T, D]
audio_lens.append(audio.shape[0])
# text
# for training, text is token ids
# else text is string, convert to unicode ord
tokens = [[], []]
for idx, text in enumerate([translation, transcription]):
if self._keep_transcription_text:
assert isinstance(text, str), (type(text), text)
tokens[idx] = [ord(t) for t in text]
else:
tokens[idx] = text # token ids
tokens[idx] = tokens[idx] if isinstance(
tokens[idx], np.ndarray) else np.array(
tokens[idx], dtype=np.int64)
translation_text.append(tokens[0])
translation_text_lens.append(tokens[0].shape[0])
transcription_text.append(tokens[1])
transcription_text_lens.append(tokens[1].shape[0])
padded_audios = pad_sequence(
audios, padding_value=0.0).astype(np.float32) #[B, T, D]
audio_lens = np.array(audio_lens).astype(np.int64)
padded_translation = pad_sequence(
translation_text, padding_value=IGNORE_ID).astype(np.int64)
translation_lens = np.array(translation_text_lens).astype(np.int64)
padded_transcription = pad_sequence(
transcription_text, padding_value=IGNORE_ID).astype(np.int64)
transcription_lens = np.array(transcription_text_lens).astype(np.int64)
return utts, padded_audios, audio_lens, (
padded_translation, padded_transcription), (translation_lens,
transcription_lens)