You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
5.4 KiB
145 lines
5.4 KiB
"""Evaluation for DeepSpeech2 model."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import distutils.util
|
|
import argparse
|
|
import multiprocessing
|
|
import paddle.v2 as paddle
|
|
from data_utils.data import DataGenerator
|
|
from model import DeepSpeech2Model
|
|
from error_rate import wer, cer
|
|
|
|
NUM_CPU = multiprocessing.cpu_count() // 2
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
|
|
|
|
def add_arg(argname, type, default, help, **kwargs):
|
|
type = distutils.util.strtobool if type == bool else type
|
|
parser.add_argument(
|
|
"--" + argname,
|
|
default=default,
|
|
type=type,
|
|
help=help + ' Default: %(default)s.',
|
|
**kwargs)
|
|
|
|
|
|
# yapf: disable
|
|
# configurations of overall
|
|
add_arg('batch_size', int, 128, "Minibatch size.")
|
|
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
|
|
add_arg('use_gpu', bool, True, "Use GPU or not.")
|
|
add_arg('error_rate_type', str, 'wer', "Error rate type for evaluation.",
|
|
choices=['wer', 'cer'])
|
|
# configurations of decoder
|
|
add_arg('beam_size', int, 500, "Beam search width.")
|
|
add_arg('alpha', float, 0.36, "Coef of LM for beam search.")
|
|
add_arg('beta', float, 0.25, "Coef of WC for beam search.")
|
|
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
|
|
add_arg('parallels_bsearch',int, NUM_CPU,"# of CPUs for beam search.")
|
|
add_arg('lang_model_path', str,
|
|
'lm/data/common_crawl_00.prune01111.trie.klm',
|
|
"Filepath for language model.")
|
|
add_arg('decoder_method', str,
|
|
'ctc_beam_search',
|
|
"Decoder method. Options: ctc_beam_search, ctc_greedy",
|
|
choices = ['ctc_beam_search', 'ctc_greedy'])
|
|
# configurations of data preprocess
|
|
add_arg('parallels_data', int, NUM_CPU,"# of CPUs for data preprocessing.")
|
|
add_arg('specgram_type', str,
|
|
'linear',
|
|
"Audio feature type. Options: linear, mfcc.",
|
|
choices=['linear', 'mfcc'])
|
|
# configurations of model structure
|
|
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
|
|
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
|
|
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
|
|
add_arg('use_gru', bool, False, "Use GRUs instead of Simple RNNs.")
|
|
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
|
|
"bi-directional RNNs. Not for GRU.")
|
|
# configurations of data io
|
|
add_arg('test_manifest', str,
|
|
'datasets/manifest.test',
|
|
"Filepath of manifest to evaluate.")
|
|
add_arg('mean_std_path', str,
|
|
'mean_std.npz',
|
|
"Filepath of normalizer's mean & std.")
|
|
add_arg('vocab_path', str,
|
|
'datasets/vocab/eng_vocab.txt',
|
|
"Filepath of vocabulary.")
|
|
# configurations of model io
|
|
add_arg('model_path', str,
|
|
'./checkpoints/params.latest.tar.gz',
|
|
"If None, the training starts from scratch, "
|
|
"otherwise, it resumes from the pre-trained model.")
|
|
args = parser.parse_args()
|
|
# yapf: disable
|
|
|
|
|
|
def evaluate():
|
|
"""Evaluate on whole test data for DeepSpeech2."""
|
|
data_generator = DataGenerator(
|
|
vocab_filepath=args.vocab_path,
|
|
mean_std_filepath=args.mean_std_path,
|
|
augmentation_config='{}',
|
|
specgram_type=args.specgram_type,
|
|
num_threads=args.parallels_data)
|
|
batch_reader = data_generator.batch_reader_creator(
|
|
manifest_path=args.test_manifest,
|
|
batch_size=args.batch_size,
|
|
min_batch_size=1,
|
|
sortagrad=False,
|
|
shuffle_method=None)
|
|
|
|
ds2_model = DeepSpeech2Model(
|
|
vocab_size=data_generator.vocab_size,
|
|
num_conv_layers=args.num_conv_layers,
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
rnn_layer_size=args.rnn_layer_size,
|
|
use_gru=args.use_gru,
|
|
pretrained_model_path=args.model_path,
|
|
share_rnn_weights=args.share_rnn_weights)
|
|
|
|
error_rate_func = cer if args.error_rate_type == 'cer' else wer
|
|
error_sum, num_ins = 0.0, 0
|
|
for infer_data in batch_reader():
|
|
result_transcripts = ds2_model.infer_batch(
|
|
infer_data=infer_data,
|
|
decoder_method=args.decoder_method,
|
|
beam_alpha=args.alpha,
|
|
beam_beta=args.beta,
|
|
beam_size=args.beam_size,
|
|
cutoff_prob=args.cutoff_prob,
|
|
vocab_list=data_generator.vocab_list,
|
|
language_model_path=args.lang_model_path,
|
|
num_processes=args.parallels_bsearch)
|
|
target_transcripts = [
|
|
''.join([data_generator.vocab_list[token] for token in transcript])
|
|
for _, transcript in infer_data
|
|
]
|
|
for target, result in zip(target_transcripts, result_transcripts):
|
|
error_sum += error_rate_func(target, result)
|
|
num_ins += 1
|
|
print("Error rate [%s] (%d/?) = %f" %
|
|
(args.error_rate_type, num_ins, error_sum / num_ins))
|
|
print("Final error rate [%s] (%d/%d) = %f" %
|
|
(args.error_rate_type, num_ins, num_ins, error_sum / num_ins))
|
|
|
|
|
|
def print_arguments(args):
|
|
print("----------- Configuration Arguments -----------")
|
|
for arg, value in sorted(vars(args).iteritems()):
|
|
print("%s: %s" % (arg, value))
|
|
print("------------------------------------------------")
|
|
|
|
|
|
def main():
|
|
print_arguments(args)
|
|
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
|
|
evaluate()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|