PaddleSpeech/runtime/engine/asr/nnet/decodable.h

87 lines
2.7 KiB

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "base/common.h"
#include "kaldi/decoder/decodable-itf.h"
#include "matrix/kaldi-matrix.h"
#include "nnet/nnet_itf.h"
#include "nnet/nnet_producer.h"
namespace ppspeech {
struct DecodableOpts;
class Decodable : public kaldi::DecodableInterface {
public:
explicit Decodable(const std::shared_ptr<NnetProducer>& nnet_producer,
kaldi::BaseFloat acoustic_scale = 1.0);
// nnet logprob output, used by wfst
virtual kaldi::BaseFloat LogLikelihood(int32 frame, int32 index);
// nnet output
virtual bool FrameLikelihood(int32 frame,
std::vector<kaldi::BaseFloat>* likelihood);
// forward nnet with feats
bool AdvanceChunk();
// forward nnet with feats, and get nnet output
bool AdvanceChunk(kaldi::Vector<kaldi::BaseFloat>* logprobs,
int* vocab_dim);
void AttentionRescoring(const std::vector<std::vector<int>>& hyps,
float reverse_weight,
std::vector<float>* rescoring_score);
virtual bool IsLastFrame(int32 frame);
// nnet output dim, e.g. vocab size
virtual int32 NumIndices() const;
virtual int32 NumFramesReady() const;
void Reset();
bool IsInputFinished() const { return nnet_producer_->IsFinished(); }
bool EnsureFrameHaveComputed(int32 frame);
int32 TokenId2NnetId(int32 token_id);
// for offline test
void Acceptlikelihood(const kaldi::Matrix<kaldi::BaseFloat>& likelihood);
private:
std::shared_ptr<NnetProducer> nnet_producer_;
// the frame is nnet prob frame rather than audio feature frame
// nnet frame subsample the feature frame
// eg: 35 frame features output 8 frame inferences
int32 frame_offset_;
int32 frames_ready_;
// todo: feature frame mismatch with nnet inference frame
// so use subsampled_frame
int32 current_log_post_subsampled_offset_;
int32 num_chunk_computed_;
std::vector<kaldi::BaseFloat> framelikelihood_;
kaldi::BaseFloat acoustic_scale_;
};
} // namespace ppspeech