You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
75 lines
2.6 KiB
75 lines
2.6 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
from paddle.io import Dataset
|
|
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
from paddlespeech.s2t.io.utility import pad_list
|
|
|
|
|
|
class TextDataset(Dataset):
|
|
@classmethod
|
|
def from_file(cls, file_path):
|
|
dataset = cls(file_path)
|
|
return dataset
|
|
|
|
def __init__(self, file_path):
|
|
self._manifest = []
|
|
with open(file_path) as f:
|
|
for line in f:
|
|
self._manifest.append(line.strip())
|
|
|
|
def __len__(self):
|
|
return len(self._manifest)
|
|
|
|
def __getitem__(self, idx):
|
|
return self._manifest[idx]
|
|
|
|
|
|
class TextCollatorSpm():
|
|
def __init__(self, unit_type, vocab_filepath, spm_model_prefix):
|
|
assert (vocab_filepath is not None)
|
|
self.text_featurizer = TextFeaturizer(
|
|
unit_type=unit_type,
|
|
vocab_filepath=vocab_filepath,
|
|
spm_model_prefix=spm_model_prefix)
|
|
self.eos_id = self.text_featurizer.eos_id
|
|
self.blank_id = self.text_featurizer.blank_id
|
|
|
|
def __call__(self, batch):
|
|
"""
|
|
return type [List, np.array [B, T], np.array [B, T], np.array[B]]
|
|
"""
|
|
keys = []
|
|
texts = []
|
|
texts_input = []
|
|
texts_output = []
|
|
text_lens = []
|
|
|
|
for idx, item in enumerate(batch):
|
|
key = item.split(" ")[0].strip()
|
|
text = " ".join(item.split(" ")[1:])
|
|
keys.append(key)
|
|
token_ids = self.text_featurizer.featurize(text)
|
|
texts_input.append(
|
|
np.array([self.eos_id] + token_ids).astype(np.int64))
|
|
texts_output.append(
|
|
np.array(token_ids + [self.eos_id]).astype(np.int64))
|
|
text_lens.append(len(token_ids) + 1)
|
|
|
|
ys_input_pad = pad_list(texts_input, self.blank_id).astype(np.int64)
|
|
ys_output_pad = pad_list(texts_output, self.blank_id).astype(np.int64)
|
|
y_lens = np.array(text_lens).astype(np.int64)
|
|
return keys, ys_input_pad, ys_output_pad, y_lens
|