You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/ami/sd0/local/compute_embdding.py

233 lines
7.9 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import pickle
import sys
import numpy as np
import paddle
from ami_dataset import AMIDataset
from paddle.io import BatchSampler
from paddle.io import DataLoader
from tqdm.contrib import tqdm
from yacs.config import CfgNode
from paddlespeech.s2t.utils.log import Log
from paddlespeech.vector.cluster.diarization import EmbeddingMeta
from paddlespeech.vector.io.batch import batch_feature_normalize
from paddlespeech.vector.models.ecapa_tdnn import EcapaTdnn
from paddlespeech.vector.modules.sid_model import SpeakerIdetification
from paddlespeech.vector.training.seeding import seed_everything
# Logger setup
logger = Log(__name__).getlog()
def prepare_subset_json(full_meta_data, rec_id, out_meta_file):
"""Prepares metadata for a given recording ID.
Arguments
---------
full_meta_data : json
Full meta (json) containing all the recordings
rec_id : str
The recording ID for which meta (json) has to be prepared
out_meta_file : str
Path of the output meta (json) file.
"""
subset = {}
for key in full_meta_data:
k = str(key)
if k.startswith(rec_id):
subset[key] = full_meta_data[key]
with open(out_meta_file, mode="w") as json_f:
json.dump(subset, json_f, indent=2)
def create_dataloader(json_file, batch_size):
"""Creates the datasets and their data processing pipelines.
This is used for multi-mic processing.
"""
# create datasets
dataset = AMIDataset(
json_file=json_file,
feat_type='melspectrogram',
n_mels=config.n_mels,
window_size=config.window_size,
hop_length=config.hop_size)
# create dataloader
batch_sampler = BatchSampler(dataset, batch_size=batch_size, shuffle=True)
dataloader = DataLoader(dataset,
batch_sampler=batch_sampler,
collate_fn=lambda x: batch_feature_normalize(
x, mean_norm=True, std_norm=False),
return_list=True)
return dataloader
def main(args, config):
# set the training device, cpu or gpu
paddle.set_device(args.device)
# set the random seed
seed_everything(config.seed)
# stage1: build the dnn backbone model network
ecapa_tdnn = EcapaTdnn(**config.model)
# stage2: build the speaker verification eval instance with backbone model
model = SpeakerIdetification(
backbone=ecapa_tdnn, num_class=1)
# stage3: load the pre-trained model
# we get the last model from the epoch and save_interval
args.load_checkpoint = os.path.abspath(
os.path.expanduser(args.load_checkpoint))
# load model checkpoint to sid model
state_dict = paddle.load(
os.path.join(args.load_checkpoint, 'model.pdparams'))
model.set_state_dict(state_dict)
logger.info(f'Checkpoint loaded from {args.load_checkpoint}')
# set the model to eval mode
model.eval()
# load meta data
meta_file = os.path.join(
args.data_dir,
config.meta_data_dir,
"ami_" + args.dataset + "." + config.mic_type + ".subsegs.json", )
with open(meta_file, "r") as f:
full_meta = json.load(f)
# get all the recording IDs in this dataset.
all_keys = full_meta.keys()
A = [word.rstrip().split("_")[0] for word in all_keys]
all_rec_ids = list(set(A[1:]))
all_rec_ids.sort()
split = "AMI_" + args.dataset
i = 1
msg = "Extra embdding for " + args.dataset + " set"
logger.info(msg)
if len(all_rec_ids) <= 0:
msg = "No recording IDs found! Please check if meta_data json file is properly generated."
logger.error(msg)
sys.exit()
# extra different recordings embdding in a dataset.
for rec_id in tqdm(all_rec_ids):
# This tag will be displayed in the log.
tag = ("[" + str(args.dataset) + ": " + str(i) + "/" +
str(len(all_rec_ids)) + "]")
i = i + 1
# log message.
msg = "Embdding %s : %s " % (tag, rec_id)
logger.debug(msg)
# embedding directory.
if not os.path.exists(
os.path.join(args.data_dir, config.embedding_dir, split)):
os.makedirs(
os.path.join(args.data_dir, config.embedding_dir, split))
# file to store embeddings.
emb_file_name = rec_id + "." + config.mic_type + ".emb_stat.pkl"
diary_stat_emb_file = os.path.join(args.data_dir, config.embedding_dir,
split, emb_file_name)
# prepare a metadata (json) for one recording. This is basically a subset of full_meta.
# lets keep this meta-info in embedding directory itself.
json_file_name = rec_id + "." + config.mic_type + ".json"
meta_per_rec_file = os.path.join(args.data_dir, config.embedding_dir,
split, json_file_name)
# write subset (meta for one recording) json metadata.
prepare_subset_json(full_meta, rec_id, meta_per_rec_file)
# prepare data loader.
diary_set_loader = create_dataloader(meta_per_rec_file,
config.batch_size)
# extract embeddings (skip if already done).
if not os.path.isfile(diary_stat_emb_file):
logger.debug("Extracting deep embeddings")
embeddings = np.empty(shape=[0, config.emb_dim], dtype=np.float64)
segset = []
for batch_idx, batch in enumerate(tqdm(diary_set_loader)):
# extrac the audio embedding
ids, feats, lengths = batch['ids'], batch['feats'], batch[
'lengths']
seg = [x for x in ids]
segset = segset + seg
emb = model.backbone(feats, lengths).squeeze(
-1).numpy() # (N, emb_size, 1) -> (N, emb_size)
embeddings = np.concatenate((embeddings, emb), axis=0)
segset = np.array(segset, dtype="|O")
stat_obj = EmbeddingMeta(
segset=segset,
stats=embeddings, )
logger.debug("Saving Embeddings...")
with open(diary_stat_emb_file, "wb") as output:
pickle.dump(stat_obj, output)
else:
logger.debug("Skipping embedding extraction (as already present).")
# Begin experiment!
if __name__ == "__main__":
parser = argparse.ArgumentParser(__doc__)
parser.add_argument(
'--device',
default="gpu",
help="Select which device to perform diarization, defaults to gpu.")
parser.add_argument(
"--config", default=None, type=str, help="configuration file")
parser.add_argument(
"--data-dir",
default="../save/",
type=str,
help="processsed data directory")
parser.add_argument(
"--dataset",
choices=['dev', 'eval'],
default="dev",
type=str,
help="Select which dataset to extra embdding, defaults to dev")
parser.add_argument(
"--load-checkpoint",
type=str,
default='',
help="Directory to load model checkpoint to compute embeddings.")
args = parser.parse_args()
config = CfgNode(new_allowed=True)
if args.config:
config.merge_from_file(args.config)
config.freeze()
main(args, config)