You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/decoders/utils.py

130 lines
3.9 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
__all__ = ["end_detect", "parse_hypothesis", "add_results_to_json"]
def end_detect(ended_hyps, i, M=3, D_end=np.log(1 * np.exp(-10))):
"""End detection.
described in Eq. (50) of S. Watanabe et al
"Hybrid CTC/Attention Architecture for End-to-End Speech Recognition"
:param ended_hyps: dict
:param i: int
:param M: int
:param D_end: float
:return: bool
"""
if len(ended_hyps) == 0:
return False
count = 0
best_hyp = sorted(ended_hyps, key=lambda x: x["score"], reverse=True)[0]
for m in range(M):
# get ended_hyps with their length is i - m
hyp_length = i - m
hyps_same_length = [
x for x in ended_hyps if len(x["yseq"]) == hyp_length
]
if len(hyps_same_length) > 0:
best_hyp_same_length = sorted(
hyps_same_length, key=lambda x: x["score"], reverse=True)[0]
if best_hyp_same_length["score"] - best_hyp["score"] < D_end:
count += 1
if count == M:
return True
else:
return False
# * ------------------ recognition related ------------------ *
def parse_hypothesis(hyp, char_list):
"""Parse hypothesis.
Args:
hyp (list[dict[str, Any]]): Recognition hypothesis.
char_list (list[str]): List of characters.
Returns:
tuple(str, str, str, float)
"""
# remove sos and get results
tokenid_as_list = list(map(int, hyp["yseq"][1:]))
token_as_list = [char_list[idx] for idx in tokenid_as_list]
score = float(hyp["score"])
# convert to string
tokenid = " ".join([str(idx) for idx in tokenid_as_list])
token = " ".join(token_as_list)
text = "".join(token_as_list).replace("<space>", " ")
return text, token, tokenid, score
def add_results_to_json(js, nbest_hyps, char_list):
"""Add N-best results to json.
Args:
js (dict[str, Any]): Groundtruth utterance dict.
nbest_hyps_sd (list[dict[str, Any]]):
List of hypothesis for multi_speakers: nutts x nspkrs.
char_list (list[str]): List of characters.
Returns:
dict[str, Any]: N-best results added utterance dict.
"""
# copy old json info
new_js = dict()
new_js["utt2spk"] = js["utt2spk"]
new_js["output"] = []
for n, hyp in enumerate(nbest_hyps, 1):
# parse hypothesis
rec_text, rec_token, rec_tokenid, score = parse_hypothesis(hyp,
char_list)
# copy ground-truth
if len(js["output"]) > 0:
out_dic = dict(js["output"][0].items())
else:
# for no reference case (e.g., speech translation)
out_dic = {"name": ""}
# update name
out_dic["name"] += "[%d]" % n
# add recognition results
out_dic["rec_text"] = rec_text
out_dic["rec_token"] = rec_token
out_dic["rec_tokenid"] = rec_tokenid
out_dic["score"] = score
# add to list of N-best result dicts
new_js["output"].append(out_dic)
# show 1-best result
if n == 1:
if "text" in out_dic.keys():
logger.info("groundtruth: %s" % out_dic["text"])
logger.info("prediction : %s" % out_dic["rec_text"])
return new_js