You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/engine/asr/online/asr_engine.py

339 lines
12 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional
import numpy as np
import paddle
from numpy import float32
from yacs.config import CfgNode
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.log import logger
from paddlespeech.cli.utils import MODEL_HOME
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.frontend.speech import SpeechSegment
from paddlespeech.s2t.modules.ctc import CTCDecoder
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.audio_process import pcm2float
from paddlespeech.server.utils.paddle_predictor import init_predictor
__all__ = ['ASREngine']
pretrained_models = {
"deepspeech2online_aishell-zh-16k": {
'url':
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.1.1.model.tar.gz',
'md5':
'23e16c69730a1cb5d735c98c83c21e16',
'cfg_path':
'model.yaml',
'ckpt_path':
'exp/deepspeech2_online/checkpoints/avg_1',
'model':
'exp/deepspeech2_online/checkpoints/avg_1.jit.pdmodel',
'params':
'exp/deepspeech2_online/checkpoints/avg_1.jit.pdiparams',
'lm_url':
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
'lm_md5':
'29e02312deb2e59b3c8686c7966d4fe3'
},
}
class ASRServerExecutor(ASRExecutor):
def __init__(self):
super().__init__()
pass
def _init_from_path(self,
model_type: str='wenetspeech',
am_model: Optional[os.PathLike]=None,
am_params: Optional[os.PathLike]=None,
lang: str='zh',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
decode_method: str='attention_rescoring',
am_predictor_conf: dict=None):
"""
Init model and other resources from a specific path.
"""
if cfg_path is None or am_model is None or am_params is None:
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
self.res_path = res_path
self.cfg_path = os.path.join(res_path,
pretrained_models[tag]['cfg_path'])
self.am_model = os.path.join(res_path,
pretrained_models[tag]['model'])
self.am_params = os.path.join(res_path,
pretrained_models[tag]['params'])
logger.info(res_path)
logger.info(self.cfg_path)
logger.info(self.am_model)
logger.info(self.am_params)
else:
self.cfg_path = os.path.abspath(cfg_path)
self.am_model = os.path.abspath(am_model)
self.am_params = os.path.abspath(am_params)
self.res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
with UpdateConfig(self.config):
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
from paddlespeech.s2t.io.collator import SpeechCollator
self.vocab = self.config.vocab_filepath
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
self.collate_fn_test = SpeechCollator.from_config(self.config)
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type, vocab=self.vocab)
lm_url = pretrained_models[tag]['lm_url']
lm_md5 = pretrained_models[tag]['lm_md5']
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
raise Exception("wrong type")
else:
raise Exception("wrong type")
# AM predictor
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
# decoder
self.decoder = CTCDecoder(
odim=self.config.output_dim, # <blank> is in vocab
enc_n_units=self.config.rnn_layer_size * 2,
blank_id=self.config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
# init decoder
cfg = self.config.decode
decode_batch_size = 1 # for online
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
# init state box
self.chunk_state_h_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
def reset_decoder_and_chunk(self):
"""reset decoder and chunk state for an new audio
"""
self.decoder.reset_decoder(batch_size=1)
# init state box, for new audio request
self.chunk_state_h_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
def decode_one_chunk(self, x_chunk, x_chunk_lens, model_type: str):
"""decode one chunk
Args:
x_chunk (numpy.array): shape[B, T, D]
x_chunk_lens (numpy.array): shape[B]
model_type (str): online model type
Returns:
[type]: [description]
"""
if "deepspeech2online" in model_type:
input_names = self.am_predictor.get_input_names()
audio_handle = self.am_predictor.get_input_handle(input_names[0])
audio_len_handle = self.am_predictor.get_input_handle(
input_names[1])
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
audio_handle.reshape(x_chunk.shape)
audio_handle.copy_from_cpu(x_chunk)
audio_len_handle.reshape(x_chunk_lens.shape)
audio_len_handle.copy_from_cpu(x_chunk_lens)
h_box_handle.reshape(self.chunk_state_h_box.shape)
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
c_box_handle.reshape(self.chunk_state_c_box.shape)
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
output_names = self.am_predictor.get_output_names()
output_handle = self.am_predictor.get_output_handle(output_names[0])
output_lens_handle = self.am_predictor.get_output_handle(
output_names[1])
output_state_h_handle = self.am_predictor.get_output_handle(
output_names[2])
output_state_c_handle = self.am_predictor.get_output_handle(
output_names[3])
self.am_predictor.run()
output_chunk_probs = output_handle.copy_to_cpu()
output_chunk_lens = output_lens_handle.copy_to_cpu()
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
self.decoder.next(output_chunk_probs, output_chunk_lens)
trans_best, trans_beam = self.decoder.decode()
return trans_best[0]
elif "conformer" in model_type or "transformer" in model_type:
raise Exception("invalid model name")
else:
raise Exception("invalid model name")
def extract_feat(self, samples, sample_rate):
"""extract feat
Args:
samples (numpy.array): numpy.float32
sample_rate (int): sample rate
Returns:
x_chunk (numpy.array): shape[B, T, D]
x_chunk_lens (numpy.array): shape[B]
"""
# pcm16 -> pcm 32
samples = pcm2float(samples)
# read audio
speech_segment = SpeechSegment.from_pcm(
samples, sample_rate, transcript=" ")
# audio augment
self.collate_fn_test.augmentation.transform_audio(speech_segment)
# extract speech feature
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
speech_segment, self.collate_fn_test.keep_transcription_text)
# CMVN spectrum
if self.collate_fn_test._normalizer:
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
# spectrum augment
audio = self.collate_fn_test.augmentation.transform_feature(spectrum)
audio_len = audio.shape[0]
audio = paddle.to_tensor(audio, dtype='float32')
# audio_len = paddle.to_tensor(audio_len)
audio = paddle.unsqueeze(audio, axis=0)
x_chunk = audio.numpy()
x_chunk_lens = np.array([audio_len])
return x_chunk, x_chunk_lens
class ASREngine(BaseEngine):
"""ASR server engine
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(ASREngine, self).__init__()
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.input = None
self.output = ""
self.executor = ASRServerExecutor()
self.config = config
self.executor._init_from_path(
model_type=self.config.model_type,
am_model=self.config.am_model,
am_params=self.config.am_params,
lang=self.config.lang,
sample_rate=self.config.sample_rate,
cfg_path=self.config.cfg_path,
decode_method=self.config.decode_method,
am_predictor_conf=self.config.am_predictor_conf)
logger.info("Initialize ASR server engine successfully.")
return True
def preprocess(self, samples, sample_rate):
"""preprocess
Args:
samples (numpy.array): numpy.float32
sample_rate (int): sample rate
Returns:
x_chunk (numpy.array): shape[B, T, D]
x_chunk_lens (numpy.array): shape[B]
"""
x_chunk, x_chunk_lens = self.executor.extract_feat(samples, sample_rate)
return x_chunk, x_chunk_lens
def run(self, x_chunk, x_chunk_lens, decoder_chunk_size=1):
"""run online engine
Args:
x_chunk (numpy.array): shape[B, T, D]
x_chunk_lens (numpy.array): shape[B]
decoder_chunk_size(int)
"""
self.output = self.executor.decode_one_chunk(x_chunk, x_chunk_lens,
self.config.model_type)
def postprocess(self):
"""postprocess
"""
return self.output
def reset(self):
"""reset engine decoder and inference state
"""
self.executor.reset_decoder_and_chunk()
self.output = ""