You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/audio/codec/dac/inferencer.py

108 lines
3.5 KiB

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DAC model inference implementation.
This module contains the inference implementation for the DAC model.
"""
import os
import logging
import numpy as np
from typing import Dict, List, Union
import paddle
from paddlespeech.audio.codec.dac.model import DACModel, EncoderModel, DecoderModel
from paddlespeech.audio.codec.dac.processor import DACProcessor
class DACInferencer:
"""Inference class for DAC model."""
def __init__(self,
checkpoint_path,
model_config=None,
device=paddle.get_device()):
"""Initialize DAC inferencer.
Args:
checkpoint_path (str): Path to model checkpoint
model_config (dict, optional): Model configuration. Defaults to None.
device (str, optional): Device to run inference on. Defaults to paddle.get_device().
"""
paddle.set_device(device)
self.checkpoint_path = checkpoint_path
self.model_config = model_config or {}
# Initialize model and processor
self._init_model()
self.processor = DACProcessor(sample_rate=self.model.sample_rate)
def _init_model(self):
"""Initialize the DAC model from checkpoint."""
# TODO: Implement model loading from checkpoint
self.model = DACModel(**self.model_config)
# Load model parameters
if os.path.isfile(self.checkpoint_path):
state_dict = paddle.load(self.checkpoint_path)
self.model.set_state_dict(state_dict)
self.model.eval()
else:
raise FileNotFoundError(f"Model checkpoint not found: {self.checkpoint_path}")
def encode(self, audio, **kwargs):
"""Encode audio to latent representation.
Args:
audio (numpy.ndarray): Input audio array
Returns:
paddle.Tensor: Encoded latent representation
"""
# TODO: Implement encoding logic
pass
def decode(self, latent, **kwargs):
"""Decode latent representation to audio.
Args:
latent (paddle.Tensor): Encoded latent representation
Returns:
numpy.ndarray: Decoded audio
"""
# TODO: Implement decoding logic
pass
def reconstruct(self, audio, **kwargs):
"""Reconstruct audio by encoding and decoding.
Args:
audio (numpy.ndarray): Input audio array
Returns:
numpy.ndarray: Reconstructed audio
"""
# Preprocess audio
audio_tensor = self.processor.preprocess(audio)
# Run inference
with paddle.no_grad():
output, _ = self.model(audio_tensor.unsqueeze(0))
# Postprocess output
return self.processor.postprocess(output.squeeze(0))