You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/audio/codec/dac/evaluate.py

218 lines
6.4 KiB

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation script for DAC model.
This script evaluates the DAC model using multiple quality metrics.
"""
import argparse
import os
import json
import numpy as np
import soundfile as sf
from tqdm import tqdm
import yaml
import paddle
from paddle.io import DataLoader
from paddlespeech.audio.codec.dac.model import DACModel
from paddlespeech.audio.codec.dac.evaluator import DACEvaluator, DACAudioMetrics
from paddlespeech.audio.codec.dac.inferencer import DACInferencer
# TODO: Import dataset classes once implemented
def main(args):
"""Run DAC model evaluation on test dataset.
Args:
args: Command line arguments
"""
# Load configuration
with open(args.config, 'r') as f:
config = yaml.safe_load(f)
# Initialize model
model = DACModel(**config['model'])
# Load model checkpoint
state_dict = paddle.load(args.checkpoint)
model.set_state_dict(state_dict)
model.eval()
# Setup distributed evaluation if requested
if args.ngpus > 1:
paddle.distributed.init_parallel_env()
model = paddle.DataParallel(model)
# TODO: Setup dataset and dataloader
# This is a placeholder for the dataset setup
# test_dataset = ...
# test_dataloader = DataLoader(...)
# Initialize evaluator
evaluator = DACEvaluator(
model=model,
dataloader=None, # TODO: Replace with actual test_dataloader
sample_rate=config['model'].get('sample_rate', 44100))
# Run evaluation
results = {}
if args.mode == 'dataset':
# Evaluate on full dataset
results = evaluator.evaluate()
elif args.mode == 'directory':
# Evaluate on directory of audio files
results = evaluate_directory(args.input_dir, args.reference_dir, model, config)
# Save results
os.makedirs(os.path.dirname(args.output), exist_ok=True)
with open(args.output, 'w') as f:
json.dump(results, f, indent=2)
# Print summary
print("\nEvaluation Results:")
print(json.dumps(results, indent=2))
def evaluate_directory(input_dir, reference_dir, model, config):
"""Evaluate model on directory of audio files.
Args:
input_dir: Directory containing input audio files
reference_dir: Directory containing reference audio files
model: DAC model instance
config: Configuration dictionary
Returns:
dict: Dictionary of evaluation metrics
"""
inferencer = DACInferencer(
checkpoint_path=None, # We already loaded the model
model_config=config['model'])
inferencer.model = model
metrics_calculator = DACAudioMetrics(
sample_rate=config['model'].get('sample_rate', 44100))
all_metrics = {}
file_metrics = []
# Get list of files
files = [f for f in os.listdir(input_dir) if f.endswith(('.wav', '.mp3', '.flac'))]
# Process each file
for filename in tqdm(files):
input_path = os.path.join(input_dir, filename)
reference_path = os.path.join(reference_dir, filename)
if not os.path.exists(reference_path):
print(f"Warning: Reference file not found: {reference_path}")
continue
# Load audio files
input_audio, sr_in = sf.read(input_path)
reference_audio, sr_ref = sf.read(reference_path)
# Make mono if stereo
if input_audio.ndim > 1:
input_audio = input_audio.mean(axis=1)
if reference_audio.ndim > 1:
reference_audio = reference_audio.mean(axis=1)
# Ensure same length
min_len = min(len(input_audio), len(reference_audio))
input_audio = input_audio[:min_len]
reference_audio = reference_audio[:min_len]
# Process through model
reconstructed_audio = inferencer.reconstruct(input_audio)
# Calculate metrics
metrics = metrics_calculator.compute_metrics(reference_audio, reconstructed_audio)
# Store per-file results
file_result = {
'filename': filename,
'metrics': metrics
}
file_metrics.append(file_result)
# Accumulate metrics
for key, value in metrics.items():
if key not in all_metrics:
all_metrics[key] = []
all_metrics[key].append(value)
# Calculate averages
avg_metrics = {key: np.mean(values) for key, values in all_metrics.items()}
# Prepare results
results = {
'average_metrics': avg_metrics,
'per_file_metrics': file_metrics
}
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate DAC model")
parser.add_argument(
"--config",
type=str,
required=True,
help="Path to configuration file")
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to model checkpoint")
parser.add_argument(
"--mode",
type=str,
default="dataset",
choices=["dataset", "directory"],
help="Evaluation mode: use test dataset or directory of files")
parser.add_argument(
"--input-dir",
type=str,
default=None,
help="Directory containing input audio files (for directory mode)")
parser.add_argument(
"--reference-dir",
type=str,
default=None,
help="Directory containing reference audio files (for directory mode)")
parser.add_argument(
"--output",
type=str,
required=True,
help="Path to save evaluation results (JSON format)")
parser.add_argument(
"--ngpus",
type=int,
default=1,
help="Number of GPUs for distributed evaluation")
args = parser.parse_args()
main(args)