You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
379 lines
14 KiB
379 lines
14 KiB
// Copyright (c) 2020 Mobvoi Inc (Binbin Zhang, Di Wu)
|
|
// 2022 Binbin Zhang (binbzha@qq.com)
|
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
|
|
#include "decoder/ctc_prefix_beam_search_decoder.h"
|
|
|
|
#include "base/common.h"
|
|
#include "decoder/ctc_beam_search_opt.h"
|
|
#include "decoder/ctc_prefix_beam_search_score.h"
|
|
#include "utils/math.h"
|
|
|
|
#ifdef USE_PROFILING
|
|
#include "paddle/fluid/platform/profiler.h"
|
|
using paddle::platform::RecordEvent;
|
|
using paddle::platform::TracerEventType;
|
|
#endif
|
|
|
|
namespace ppspeech {
|
|
|
|
CTCPrefixBeamSearch::CTCPrefixBeamSearch(const std::string& vocab_path,
|
|
const CTCBeamSearchOptions& opts)
|
|
: opts_(opts) {
|
|
unit_table_ = std::shared_ptr<fst::SymbolTable>(
|
|
fst::SymbolTable::ReadText(vocab_path));
|
|
CHECK(unit_table_ != nullptr);
|
|
|
|
Reset();
|
|
}
|
|
|
|
void CTCPrefixBeamSearch::Reset() {
|
|
num_frame_decoded_ = 0;
|
|
|
|
cur_hyps_.clear();
|
|
|
|
hypotheses_.clear();
|
|
likelihood_.clear();
|
|
viterbi_likelihood_.clear();
|
|
times_.clear();
|
|
outputs_.clear();
|
|
|
|
// empty hyp with Score
|
|
std::vector<int> empty;
|
|
PrefixScore prefix_score;
|
|
prefix_score.InitEmpty();
|
|
cur_hyps_[empty] = prefix_score;
|
|
|
|
outputs_.emplace_back(empty);
|
|
hypotheses_.emplace_back(empty);
|
|
likelihood_.emplace_back(prefix_score.TotalScore());
|
|
times_.emplace_back(empty);
|
|
}
|
|
|
|
void CTCPrefixBeamSearch::InitDecoder() { Reset(); }
|
|
|
|
void CTCPrefixBeamSearch::AdvanceDecode(
|
|
const std::shared_ptr<kaldi::DecodableInterface>& decodable) {
|
|
double search_cost = 0.0;
|
|
double feat_nnet_cost = 0.0;
|
|
while (1) {
|
|
// forward frame by frame
|
|
kaldi::Timer timer;
|
|
std::vector<kaldi::BaseFloat> frame_prob;
|
|
bool flag = decodable->FrameLikelihood(num_frame_decoded_, &frame_prob);
|
|
feat_nnet_cost += timer.Elapsed();
|
|
if (flag == false) {
|
|
VLOG(2) << "decoder advance decode exit." << frame_prob.size();
|
|
break;
|
|
}
|
|
|
|
timer.Reset();
|
|
std::vector<std::vector<kaldi::BaseFloat>> likelihood;
|
|
likelihood.push_back(std::move(frame_prob));
|
|
AdvanceDecoding(likelihood);
|
|
search_cost += timer.Elapsed();
|
|
|
|
VLOG(1) << "num_frame_decoded_: " << num_frame_decoded_;
|
|
}
|
|
VLOG(1) << "AdvanceDecode feat + forward cost: " << feat_nnet_cost
|
|
<< " sec.";
|
|
VLOG(1) << "AdvanceDecode search cost: " << search_cost << " sec.";
|
|
}
|
|
|
|
static bool PrefixScoreCompare(
|
|
const std::pair<std::vector<int>, PrefixScore>& a,
|
|
const std::pair<std::vector<int>, PrefixScore>& b) {
|
|
// log domain
|
|
return a.second.TotalScore() > b.second.TotalScore();
|
|
}
|
|
|
|
|
|
void CTCPrefixBeamSearch::AdvanceDecoding(
|
|
const std::vector<std::vector<kaldi::BaseFloat>>& logp) {
|
|
#ifdef USE_PROFILING
|
|
RecordEvent event("CtcPrefixBeamSearch::AdvanceDecoding",
|
|
TracerEventType::UserDefined,
|
|
1);
|
|
#endif
|
|
|
|
if (logp.size() == 0) return;
|
|
|
|
int first_beam_size =
|
|
std::min(static_cast<int>(logp[0].size()), opts_.first_beam_size);
|
|
|
|
for (int t = 0; t < logp.size(); ++t, ++num_frame_decoded_) {
|
|
const std::vector<kaldi::BaseFloat>& logp_t = logp[t];
|
|
std::unordered_map<std::vector<int>, PrefixScore, PrefixScoreHash>
|
|
next_hyps;
|
|
|
|
// 1. first beam prune, only select topk candidates
|
|
std::vector<kaldi::BaseFloat> topk_score;
|
|
std::vector<int32_t> topk_index;
|
|
TopK(logp_t, first_beam_size, &topk_score, &topk_index);
|
|
VLOG(2) << "topk: " << num_frame_decoded_ << " "
|
|
<< *std::max_element(logp_t.begin(), logp_t.end()) << " "
|
|
<< topk_score[0];
|
|
for (int i = 0; i < topk_score.size(); i++) {
|
|
VLOG(2) << "topk: " << num_frame_decoded_ << " " << topk_score[i];
|
|
}
|
|
|
|
// 2. token passing
|
|
for (int i = 0; i < topk_index.size(); ++i) {
|
|
int id = topk_index[i];
|
|
auto prob = topk_score[i];
|
|
|
|
for (const auto& it : cur_hyps_) {
|
|
const std::vector<int>& prefix = it.first;
|
|
const PrefixScore& prefix_score = it.second;
|
|
|
|
// If prefix doesn't exist in next_hyps, next_hyps[prefix] will
|
|
// insert
|
|
// PrefixScore(-inf, -inf) by default, since the default
|
|
// constructor
|
|
// of PrefixScore will set fields b(blank ending Score) and
|
|
// nb(none blank ending Score) to -inf, respectively.
|
|
|
|
if (id == opts_.blank) {
|
|
// case 0: *a + <blank> => *a, *a<blank> + <blank> => *a,
|
|
// prefix not
|
|
// change
|
|
PrefixScore& next_score = next_hyps[prefix];
|
|
next_score.b =
|
|
LogSumExp(next_score.b, prefix_score.Score() + prob);
|
|
|
|
// timestamp, blank is slince, not effact timestamp
|
|
next_score.v_b = prefix_score.ViterbiScore() + prob;
|
|
next_score.times_b = prefix_score.Times();
|
|
|
|
// Prefix not changed, copy the context from pefix
|
|
if (context_graph_ && !next_score.has_context) {
|
|
next_score.CopyContext(prefix_score);
|
|
next_score.has_context = true;
|
|
}
|
|
|
|
} else if (!prefix.empty() && id == prefix.back()) {
|
|
// case 1: *a + a => *a, prefix not changed
|
|
PrefixScore& next_score1 = next_hyps[prefix];
|
|
next_score1.nb =
|
|
LogSumExp(next_score1.nb, prefix_score.nb + prob);
|
|
|
|
// timestamp, non-blank symbol effact timestamp
|
|
if (next_score1.v_nb < prefix_score.v_nb + prob) {
|
|
// compute viterbi Score
|
|
next_score1.v_nb = prefix_score.v_nb + prob;
|
|
if (next_score1.cur_token_prob < prob) {
|
|
// store max token prob
|
|
next_score1.cur_token_prob = prob;
|
|
// update this timestamp as token appeared here.
|
|
next_score1.times_nb = prefix_score.times_nb;
|
|
assert(next_score1.times_nb.size() > 0);
|
|
next_score1.times_nb.back() = num_frame_decoded_;
|
|
}
|
|
}
|
|
|
|
// Prefix not changed, copy the context from pefix
|
|
if (context_graph_ && !next_score1.has_context) {
|
|
next_score1.CopyContext(prefix_score);
|
|
next_score1.has_context = true;
|
|
}
|
|
|
|
// case 2: *a<blank> + a => *aa, prefix changed.
|
|
std::vector<int> new_prefix(prefix);
|
|
new_prefix.emplace_back(id);
|
|
PrefixScore& next_score2 = next_hyps[new_prefix];
|
|
next_score2.nb =
|
|
LogSumExp(next_score2.nb, prefix_score.b + prob);
|
|
|
|
// timestamp, non-blank symbol effact timestamp
|
|
if (next_score2.v_nb < prefix_score.v_b + prob) {
|
|
// compute viterbi Score
|
|
next_score2.v_nb = prefix_score.v_b + prob;
|
|
// new token added
|
|
next_score2.cur_token_prob = prob;
|
|
next_score2.times_nb = prefix_score.times_b;
|
|
next_score2.times_nb.emplace_back(num_frame_decoded_);
|
|
}
|
|
|
|
// Prefix changed, calculate the context Score.
|
|
if (context_graph_ && !next_score2.has_context) {
|
|
next_score2.UpdateContext(
|
|
context_graph_, prefix_score, id, prefix.size());
|
|
next_score2.has_context = true;
|
|
}
|
|
|
|
} else {
|
|
// id != prefix.back()
|
|
// case 3: *a + b => *ab, *a<blank> +b => *ab
|
|
std::vector<int> new_prefix(prefix);
|
|
new_prefix.emplace_back(id);
|
|
PrefixScore& next_score = next_hyps[new_prefix];
|
|
next_score.nb =
|
|
LogSumExp(next_score.nb, prefix_score.Score() + prob);
|
|
|
|
// timetamp, non-blank symbol effact timestamp
|
|
if (next_score.v_nb < prefix_score.ViterbiScore() + prob) {
|
|
next_score.v_nb = prefix_score.ViterbiScore() + prob;
|
|
|
|
next_score.cur_token_prob = prob;
|
|
next_score.times_nb = prefix_score.Times();
|
|
next_score.times_nb.emplace_back(num_frame_decoded_);
|
|
}
|
|
|
|
// Prefix changed, calculate the context Score.
|
|
if (context_graph_ && !next_score.has_context) {
|
|
next_score.UpdateContext(
|
|
context_graph_, prefix_score, id, prefix.size());
|
|
next_score.has_context = true;
|
|
}
|
|
}
|
|
} // end for (const auto& it : cur_hyps_)
|
|
} // end for (int i = 0; i < topk_index.size(); ++i)
|
|
|
|
// 3. second beam prune, only keep top n best paths
|
|
std::vector<std::pair<std::vector<int>, PrefixScore>> arr(
|
|
next_hyps.begin(), next_hyps.end());
|
|
int second_beam_size =
|
|
std::min(static_cast<int>(arr.size()), opts_.second_beam_size);
|
|
std::nth_element(arr.begin(),
|
|
arr.begin() + second_beam_size,
|
|
arr.end(),
|
|
PrefixScoreCompare);
|
|
arr.resize(second_beam_size);
|
|
std::sort(arr.begin(), arr.end(), PrefixScoreCompare);
|
|
|
|
// 4. update cur_hyps by next_hyps, and get new result
|
|
UpdateHypotheses(arr);
|
|
} // end for (int t = 0; t < logp.size(); ++t, ++num_frame_decoded_)
|
|
}
|
|
|
|
|
|
void CTCPrefixBeamSearch::UpdateHypotheses(
|
|
const std::vector<std::pair<std::vector<int>, PrefixScore>>& hyps) {
|
|
cur_hyps_.clear();
|
|
|
|
outputs_.clear();
|
|
hypotheses_.clear();
|
|
likelihood_.clear();
|
|
viterbi_likelihood_.clear();
|
|
times_.clear();
|
|
|
|
for (auto& item : hyps) {
|
|
cur_hyps_[item.first] = item.second;
|
|
|
|
UpdateOutputs(item);
|
|
hypotheses_.emplace_back(std::move(item.first));
|
|
likelihood_.emplace_back(item.second.TotalScore());
|
|
viterbi_likelihood_.emplace_back(item.second.ViterbiScore());
|
|
times_.emplace_back(item.second.Times());
|
|
}
|
|
}
|
|
|
|
void CTCPrefixBeamSearch::UpdateOutputs(
|
|
const std::pair<std::vector<int>, PrefixScore>& prefix) {
|
|
const std::vector<int>& input = prefix.first;
|
|
const std::vector<int>& start_boundaries = prefix.second.start_boundaries;
|
|
const std::vector<int>& end_boundaries = prefix.second.end_boundaries;
|
|
|
|
// add <context> </context> tag
|
|
std::vector<int> output;
|
|
int s = 0;
|
|
int e = 0;
|
|
for (int i = 0; i < input.size(); ++i) {
|
|
output.emplace_back(input[i]);
|
|
}
|
|
|
|
outputs_.emplace_back(output);
|
|
}
|
|
|
|
void CTCPrefixBeamSearch::FinalizeSearch() {
|
|
UpdateFinalContext();
|
|
|
|
VLOG(2) << "num_frame_decoded_: " << num_frame_decoded_;
|
|
int cnt = 0;
|
|
for (int i = 0; i < hypotheses_.size(); i++) {
|
|
VLOG(2) << "hyp " << cnt << " len: " << hypotheses_[i].size()
|
|
<< " ctc score: " << likelihood_[i];
|
|
for (int j = 0; j < hypotheses_[i].size(); j++) {
|
|
VLOG(2) << hypotheses_[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTCPrefixBeamSearch::UpdateFinalContext() {
|
|
if (context_graph_ == nullptr) return;
|
|
|
|
CHECK(hypotheses_.size() == cur_hyps_.size());
|
|
CHECK(hypotheses_.size() == likelihood_.size());
|
|
|
|
// We should backoff the context Score/state when the context is
|
|
// not fully matched at the last time.
|
|
for (const auto& prefix : hypotheses_) {
|
|
PrefixScore& prefix_score = cur_hyps_[prefix];
|
|
if (prefix_score.context_score != 0) {
|
|
prefix_score.UpdateContext(
|
|
context_graph_, prefix_score, 0, prefix.size());
|
|
}
|
|
}
|
|
std::vector<std::pair<std::vector<int>, PrefixScore>> arr(cur_hyps_.begin(),
|
|
cur_hyps_.end());
|
|
std::sort(arr.begin(), arr.end(), PrefixScoreCompare);
|
|
|
|
// Update cur_hyps_ and get new result
|
|
UpdateHypotheses(arr);
|
|
}
|
|
|
|
std::string CTCPrefixBeamSearch::GetBestPath(int index) {
|
|
int n_hyps = Outputs().size();
|
|
CHECK_GT(n_hyps, 0);
|
|
CHECK_LT(index, n_hyps);
|
|
std::vector<int> one = Outputs()[index];
|
|
std::string sentence;
|
|
for (int i = 0; i < one.size(); i++) {
|
|
sentence += unit_table_->Find(one[i]);
|
|
}
|
|
return sentence;
|
|
}
|
|
|
|
std::string CTCPrefixBeamSearch::GetBestPath() { return GetBestPath(0); }
|
|
|
|
std::vector<std::pair<double, std::string>> CTCPrefixBeamSearch::GetNBestPath(
|
|
int n) {
|
|
int hyps_size = hypotheses_.size();
|
|
CHECK_GT(hyps_size, 0);
|
|
|
|
int min_n = n == -1 ? hypotheses_.size() : std::min(n, hyps_size);
|
|
|
|
std::vector<std::pair<double, std::string>> n_best;
|
|
n_best.reserve(min_n);
|
|
|
|
for (int i = 0; i < min_n; i++) {
|
|
n_best.emplace_back(Likelihood()[i], GetBestPath(i));
|
|
}
|
|
return n_best;
|
|
}
|
|
|
|
std::vector<std::pair<double, std::string>>
|
|
CTCPrefixBeamSearch::GetNBestPath() {
|
|
return GetNBestPath(-1);
|
|
}
|
|
|
|
std::string CTCPrefixBeamSearch::GetFinalBestPath() { return GetBestPath(); }
|
|
|
|
std::string CTCPrefixBeamSearch::GetPartialResult() { return GetBestPath(); }
|
|
|
|
|
|
} // namespace ppspeech
|