You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
282 lines
9.0 KiB
282 lines
9.0 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Union
|
|
|
|
import librosa
|
|
import numpy as np
|
|
import pyworld
|
|
from scipy.interpolate import interp1d
|
|
from typing_extensions import Literal
|
|
|
|
|
|
class LogMelFBank():
|
|
def __init__(self,
|
|
sr: int=24000,
|
|
n_fft: int=2048,
|
|
hop_length: int=300,
|
|
win_length: int=None,
|
|
window: str="hann",
|
|
n_mels: int=80,
|
|
fmin: int=80,
|
|
fmax: int=7600,
|
|
norm: Optional[Union[Literal["slaney"], float]]="slaney",
|
|
htk: bool=False,
|
|
power: float=1.0):
|
|
self.sr = sr
|
|
# stft
|
|
self.n_fft = n_fft
|
|
self.win_length = win_length
|
|
self.hop_length = hop_length
|
|
self.window = window
|
|
self.center = True
|
|
self.pad_mode = "reflect"
|
|
self.norm = norm
|
|
self.htk = htk
|
|
|
|
# mel
|
|
self.n_mels = n_mels
|
|
self.fmin = 0 if fmin is None else fmin
|
|
self.fmax = sr / 2 if fmax is None else fmax
|
|
self.power = power
|
|
|
|
self.mel_filter = self._create_mel_filter()
|
|
|
|
def _create_mel_filter(self):
|
|
mel_filter = librosa.filters.mel(
|
|
sr=self.sr,
|
|
n_fft=self.n_fft,
|
|
n_mels=self.n_mels,
|
|
fmin=self.fmin,
|
|
fmax=self.fmax,
|
|
norm=self.norm,
|
|
htk=self.htk)
|
|
return mel_filter
|
|
|
|
def _stft(self, wav: np.ndarray):
|
|
D = librosa.core.stft(
|
|
wav,
|
|
n_fft=self.n_fft,
|
|
hop_length=self.hop_length,
|
|
win_length=self.win_length,
|
|
window=self.window,
|
|
center=self.center,
|
|
pad_mode=self.pad_mode)
|
|
return D
|
|
|
|
def _spectrogram(self, wav: np.ndarray):
|
|
D = self._stft(wav)
|
|
return np.abs(D)**self.power
|
|
|
|
def _mel_spectrogram(self, wav: np.ndarray):
|
|
S = self._spectrogram(wav)
|
|
mel = np.dot(self.mel_filter, S)
|
|
return mel
|
|
|
|
# We use different definition for log-spec between TTS and ASR
|
|
# TTS: log_10(abs(stft))
|
|
# ASR: log_e(power(stft))
|
|
|
|
def get_log_mel_fbank(self, wav, base='10'):
|
|
mel = self._mel_spectrogram(wav)
|
|
mel = np.clip(mel, a_min=1e-10, a_max=float("inf"))
|
|
if base == '10':
|
|
mel = np.log10(mel.T)
|
|
elif base == 'e':
|
|
mel = np.log(mel.T)
|
|
# (num_frames, n_mels)
|
|
return mel
|
|
|
|
|
|
class Pitch():
|
|
def __init__(self,
|
|
sr: int=24000,
|
|
hop_length: int=300,
|
|
f0min: int=80,
|
|
f0max: int=7600):
|
|
|
|
self.sr = sr
|
|
self.hop_length = hop_length
|
|
self.f0min = f0min
|
|
self.f0max = f0max
|
|
|
|
def _convert_to_continuous_f0(self, f0: np.ndarray) -> np.ndarray:
|
|
if (f0 == 0).all():
|
|
print("All frames seems to be unvoiced, this utt will be removed.")
|
|
return f0
|
|
# padding start and end of f0 sequence
|
|
start_f0 = f0[f0 != 0][0]
|
|
end_f0 = f0[f0 != 0][-1]
|
|
start_idx = np.where(f0 == start_f0)[0][0]
|
|
end_idx = np.where(f0 == end_f0)[0][-1]
|
|
f0[:start_idx] = start_f0
|
|
f0[end_idx:] = end_f0
|
|
|
|
# get non-zero frame index
|
|
nonzero_idxs = np.where(f0 != 0)[0]
|
|
|
|
# perform linear interpolation
|
|
interp_fn = interp1d(nonzero_idxs, f0[nonzero_idxs])
|
|
f0 = interp_fn(np.arange(0, f0.shape[0]))
|
|
|
|
return f0
|
|
|
|
def _calculate_f0(self,
|
|
input: np.ndarray,
|
|
use_continuous_f0: bool=True,
|
|
use_log_f0: bool=True) -> np.ndarray:
|
|
input = input.astype(np.float_)
|
|
frame_period = 1000 * self.hop_length / self.sr
|
|
f0, timeaxis = pyworld.dio(
|
|
input,
|
|
fs=self.sr,
|
|
f0_floor=self.f0min,
|
|
f0_ceil=self.f0max,
|
|
frame_period=frame_period)
|
|
f0 = pyworld.stonemask(input, f0, timeaxis, self.sr)
|
|
if use_continuous_f0:
|
|
f0 = self._convert_to_continuous_f0(f0)
|
|
if use_log_f0:
|
|
nonzero_idxs = np.where(f0 != 0)[0]
|
|
f0[nonzero_idxs] = np.log(f0[nonzero_idxs])
|
|
return f0.reshape(-1)
|
|
|
|
def _average_by_duration(self, input: np.ndarray,
|
|
d: np.ndarray) -> np.ndarray:
|
|
d_cumsum = np.pad(d.cumsum(0), (1, 0), 'constant')
|
|
arr_list = []
|
|
for start, end in zip(d_cumsum[:-1], d_cumsum[1:]):
|
|
arr = input[start:end]
|
|
mask = arr == 0
|
|
arr[mask] = 0
|
|
avg_arr = np.mean(arr, axis=0) if len(arr) != 0 else np.array(0)
|
|
arr_list.append(avg_arr)
|
|
# shape (T,1)
|
|
arr_list = np.expand_dims(np.array(arr_list), 0).T
|
|
|
|
return arr_list
|
|
|
|
def get_pitch(self,
|
|
wav: np.ndarray,
|
|
use_continuous_f0: bool=True,
|
|
use_log_f0: bool=True,
|
|
use_token_averaged_f0: bool=True,
|
|
duration: np.ndarray=None):
|
|
f0 = self._calculate_f0(wav, use_continuous_f0, use_log_f0)
|
|
if use_token_averaged_f0 and duration is not None:
|
|
f0 = self._average_by_duration(f0, duration)
|
|
else:
|
|
f0 = np.expand_dims(np.array(f0), 0).T
|
|
return f0
|
|
|
|
|
|
class Energy():
|
|
def __init__(self,
|
|
n_fft: int=2048,
|
|
hop_length: int=300,
|
|
win_length: int=None,
|
|
window: str="hann",
|
|
center: bool=True,
|
|
pad_mode: str="reflect"):
|
|
|
|
self.n_fft = n_fft
|
|
self.win_length = win_length
|
|
self.hop_length = hop_length
|
|
self.window = window
|
|
self.center = center
|
|
self.pad_mode = pad_mode
|
|
|
|
def _stft(self, wav: np.ndarray):
|
|
D = librosa.core.stft(
|
|
wav,
|
|
n_fft=self.n_fft,
|
|
hop_length=self.hop_length,
|
|
win_length=self.win_length,
|
|
window=self.window,
|
|
center=self.center,
|
|
pad_mode=self.pad_mode)
|
|
return D
|
|
|
|
def _calculate_energy(self, input: np.ndarray):
|
|
input = input.astype(np.float32)
|
|
input_stft = self._stft(input)
|
|
input_power = np.abs(input_stft)**2
|
|
energy = np.sqrt(
|
|
np.clip(
|
|
np.sum(input_power, axis=0), a_min=1.0e-10, a_max=float('inf')))
|
|
return energy
|
|
|
|
def _average_by_duration(self, input: np.ndarray,
|
|
d: np.ndarray) -> np.ndarray:
|
|
d_cumsum = np.pad(d.cumsum(0), (1, 0), 'constant')
|
|
arr_list = []
|
|
for start, end in zip(d_cumsum[:-1], d_cumsum[1:]):
|
|
arr = input[start:end]
|
|
avg_arr = np.mean(arr, axis=0) if len(arr) != 0 else np.array(0)
|
|
arr_list.append(avg_arr)
|
|
# shape (T,1)
|
|
arr_list = np.expand_dims(np.array(arr_list), 0).T
|
|
return arr_list
|
|
|
|
def get_energy(self,
|
|
wav: np.ndarray,
|
|
use_token_averaged_energy: bool=True,
|
|
duration: np.ndarray=None):
|
|
energy = self._calculate_energy(wav)
|
|
if use_token_averaged_energy and duration is not None:
|
|
energy = self._average_by_duration(energy, duration)
|
|
else:
|
|
energy = np.expand_dims(np.array(energy), 0).T
|
|
return energy
|
|
|
|
|
|
class LinearSpectrogram():
|
|
def __init__(
|
|
self,
|
|
n_fft: int=1024,
|
|
win_length: int=None,
|
|
hop_length: int=256,
|
|
window: str="hann",
|
|
center: bool=True, ):
|
|
self.n_fft = n_fft
|
|
self.hop_length = hop_length
|
|
self.win_length = win_length
|
|
self.window = window
|
|
self.center = center
|
|
self.n_fft = n_fft
|
|
self.pad_mode = "reflect"
|
|
|
|
def _stft(self, wav: np.ndarray):
|
|
D = librosa.core.stft(
|
|
wav,
|
|
n_fft=self.n_fft,
|
|
hop_length=self.hop_length,
|
|
win_length=self.win_length,
|
|
window=self.window,
|
|
center=self.center,
|
|
pad_mode=self.pad_mode)
|
|
return D
|
|
|
|
def _spectrogram(self, wav: np.ndarray):
|
|
D = self._stft(wav)
|
|
return np.abs(D)
|
|
|
|
def get_linear_spectrogram(self, wav: np.ndarray):
|
|
linear_spectrogram = self._spectrogram(wav)
|
|
linear_spectrogram = np.clip(
|
|
linear_spectrogram, a_min=1e-10, a_max=float("inf"))
|
|
return linear_spectrogram.T
|