You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/text/models/ernie_linear/ernie_linear.py

66 lines
2.3 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import paddle.nn as nn
from paddlenlp.transformers import ErnieForTokenClassification
class ErnieLinear(nn.Layer):
def __init__(self,
num_classes=None,
pretrained_token='ernie-1.0',
cfg_path=None,
ckpt_path=None,
**kwargs):
super(ErnieLinear, self).__init__()
if cfg_path is not None and ckpt_path is not None:
cfg_path = os.path.abspath(os.path.expanduser(cfg_path))
ckpt_path = os.path.abspath(os.path.expanduser(ckpt_path))
assert os.path.isfile(
cfg_path), 'Config file is not valid: {}'.format(cfg_path)
assert os.path.isfile(
ckpt_path), 'Checkpoint file is not valid: {}'.format(ckpt_path)
self.ernie = ErnieForTokenClassification.from_pretrained(
os.path.dirname(cfg_path))
else:
assert isinstance(
num_classes, int
) and num_classes > 0, 'Argument `num_classes` must be an integer.'
self.ernie = ErnieForTokenClassification.from_pretrained(
pretrained_token, num_labels=num_classes, **kwargs)
self.num_classes = self.ernie.num_labels
self.softmax = nn.Softmax()
def forward(self,
input_ids,
token_type_ids=None,
position_ids=None,
attention_mask=None):
y = self.ernie(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
position_ids=position_ids)
y = paddle.reshape(y, shape=[-1, self.num_classes])
logits = self.softmax(y)
return y, logits