You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
12 KiB
394 lines
12 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Contains data helper functions."""
|
|
import json
|
|
import math
|
|
import tarfile
|
|
from collections import namedtuple
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Text
|
|
|
|
import jsonlines
|
|
import numpy as np
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
__all__ = [
|
|
"load_dict", "load_cmvn", "read_manifest", "rms_to_db", "rms_to_dbfs",
|
|
"max_dbfs", "mean_dbfs", "gain_db_to_ratio", "normalize_audio", "SOS",
|
|
"EOS", "UNK", "BLANK", "MASKCTC", "SPACE", "convert_samples_to_float32",
|
|
"convert_samples_from_float32"
|
|
]
|
|
|
|
IGNORE_ID = -1
|
|
# `sos` and `eos` using same token
|
|
SOS = "<eos>"
|
|
EOS = SOS
|
|
UNK = "<unk>"
|
|
BLANK = "<blank>"
|
|
MASKCTC = "<mask>"
|
|
SPACE = "<space>"
|
|
|
|
|
|
def load_dict(dict_path: Optional[Text], maskctc=False) -> Optional[List[Text]]:
|
|
if dict_path is None:
|
|
return None
|
|
|
|
with open(dict_path, "r") as f:
|
|
dictionary = f.readlines()
|
|
# first token is `<blank>`
|
|
# multi line: `<blank> 0\n`
|
|
# one line: `<blank>`
|
|
# space is relpace with <space>
|
|
char_list = [entry[:-1].split(" ")[0] for entry in dictionary]
|
|
if BLANK not in char_list:
|
|
char_list.insert(0, BLANK)
|
|
if EOS not in char_list:
|
|
char_list.append(EOS)
|
|
# for non-autoregressive maskctc model
|
|
if maskctc and MASKCTC not in char_list:
|
|
char_list.append(MASKCTC)
|
|
return char_list
|
|
|
|
|
|
def read_manifest(
|
|
manifest_path,
|
|
max_input_len=float('inf'),
|
|
min_input_len=0.0,
|
|
max_output_len=float('inf'),
|
|
min_output_len=0.0,
|
|
max_output_input_ratio=float('inf'),
|
|
min_output_input_ratio=0.0, ):
|
|
"""Load and parse manifest file.
|
|
|
|
Args:
|
|
manifest_path ([type]): Manifest file to load and parse.
|
|
max_input_len ([type], optional): maximum output seq length,
|
|
in seconds for raw wav, in frame numbers for feature data.
|
|
Defaults to float('inf').
|
|
min_input_len (float, optional): minimum input seq length,
|
|
in seconds for raw wav, in frame numbers for feature data.
|
|
Defaults to 0.0.
|
|
max_output_len (float, optional): maximum input seq length,
|
|
in modeling units. Defaults to 500.0.
|
|
min_output_len (float, optional): minimum input seq length,
|
|
in modeling units. Defaults to 0.0.
|
|
max_output_input_ratio (float, optional):
|
|
maximum output seq length/output seq length ratio. Defaults to 10.0.
|
|
min_output_input_ratio (float, optional):
|
|
minimum output seq length/output seq length ratio. Defaults to 0.05.
|
|
|
|
Raises:
|
|
IOError: If failed to parse the manifest.
|
|
|
|
Returns:
|
|
List[dict]: Manifest parsing results.
|
|
"""
|
|
manifest = []
|
|
with jsonlines.open(manifest_path, 'r') as reader:
|
|
for json_data in reader:
|
|
feat_len = json_data["input"][0]["shape"][
|
|
0] if "input" in json_data and "shape" in json_data["input"][
|
|
0] else 1.0
|
|
token_len = json_data["output"][0]["shape"][
|
|
0] if "output" in json_data and "shape" in json_data["output"][
|
|
0] else 1.0
|
|
conditions = [
|
|
feat_len >= min_input_len,
|
|
feat_len <= max_input_len,
|
|
token_len >= min_output_len,
|
|
token_len <= max_output_len,
|
|
token_len / feat_len >= min_output_input_ratio,
|
|
token_len / feat_len <= max_output_input_ratio,
|
|
]
|
|
if all(conditions):
|
|
manifest.append(json_data)
|
|
return manifest
|
|
|
|
|
|
# Tar File read
|
|
TarLocalData = namedtuple('TarLocalData', ['tar2info', 'tar2object'])
|
|
|
|
|
|
def parse_tar(file):
|
|
"""Parse a tar file to get a tarfile object
|
|
and a map containing tarinfoes
|
|
"""
|
|
result = {}
|
|
f = tarfile.open(file)
|
|
for tarinfo in f.getmembers():
|
|
result[tarinfo.name] = tarinfo
|
|
return f, result
|
|
|
|
|
|
def subfile_from_tar(file, local_data=None):
|
|
"""Get subfile object from tar.
|
|
|
|
tar:tarpath#filename
|
|
|
|
It will return a subfile object from tar file
|
|
and cached tar file info for next reading request.
|
|
"""
|
|
tarpath, filename = file.split(':', 1)[1].split('#', 1)
|
|
|
|
if local_data is None:
|
|
local_data = TarLocalData(tar2info={}, tar2object={})
|
|
|
|
assert isinstance(local_data, TarLocalData)
|
|
|
|
if 'tar2info' not in local_data.__dict__:
|
|
local_data.tar2info = {}
|
|
if 'tar2object' not in local_data.__dict__:
|
|
local_data.tar2object = {}
|
|
|
|
if tarpath not in local_data.tar2info:
|
|
fobj, infos = parse_tar(tarpath)
|
|
local_data.tar2info[tarpath] = infos
|
|
local_data.tar2object[tarpath] = fobj
|
|
else:
|
|
fobj = local_data.tar2object[tarpath]
|
|
infos = local_data.tar2info[tarpath]
|
|
return fobj.extractfile(infos[filename])
|
|
|
|
|
|
def rms_to_db(rms: float):
|
|
"""Root Mean Square to dB.
|
|
|
|
Args:
|
|
rms ([float]): root mean square
|
|
|
|
Returns:
|
|
float: dB
|
|
"""
|
|
return 20.0 * math.log10(max(1e-16, rms))
|
|
|
|
|
|
def rms_to_dbfs(rms: float):
|
|
"""Root Mean Square to dBFS.
|
|
https://fireattack.wordpress.com/2017/02/06/replaygain-loudness-normalization-and-applications/
|
|
Audio is mix of sine wave, so 1 amp sine wave's Full scale is 0.7071, equal to -3.0103dB.
|
|
|
|
dB = dBFS + 3.0103
|
|
dBFS = db - 3.0103
|
|
e.g. 0 dB = -3.0103 dBFS
|
|
|
|
Args:
|
|
rms ([float]): root mean square
|
|
|
|
Returns:
|
|
float: dBFS
|
|
"""
|
|
return rms_to_db(rms) - 3.0103
|
|
|
|
|
|
def max_dbfs(sample_data: np.ndarray):
|
|
"""Peak dBFS based on the maximum energy sample.
|
|
|
|
Args:
|
|
sample_data ([np.ndarray]): float array, [-1, 1].
|
|
|
|
Returns:
|
|
float: dBFS
|
|
"""
|
|
# Peak dBFS based on the maximum energy sample. Will prevent overdrive if used for normalization.
|
|
return rms_to_dbfs(max(abs(np.min(sample_data)), abs(np.max(sample_data))))
|
|
|
|
|
|
def mean_dbfs(sample_data):
|
|
"""Peak dBFS based on the RMS energy.
|
|
|
|
Args:
|
|
sample_data ([np.ndarray]): float array, [-1, 1].
|
|
|
|
Returns:
|
|
float: dBFS
|
|
"""
|
|
return rms_to_dbfs(
|
|
math.sqrt(np.mean(np.square(sample_data, dtype=np.float64))))
|
|
|
|
|
|
def gain_db_to_ratio(gain_db: float):
|
|
"""dB to ratio
|
|
|
|
Args:
|
|
gain_db (float): gain in dB
|
|
|
|
Returns:
|
|
float: scale in amp
|
|
"""
|
|
return math.pow(10.0, gain_db / 20.0)
|
|
|
|
|
|
def normalize_audio(sample_data: np.ndarray, dbfs: float=-3.0103):
|
|
"""Nomalize audio to dBFS.
|
|
|
|
Args:
|
|
sample_data (np.ndarray): input wave samples, [-1, 1].
|
|
dbfs (float, optional): target dBFS. Defaults to -3.0103.
|
|
|
|
Returns:
|
|
np.ndarray: normalized wave
|
|
"""
|
|
return np.maximum(
|
|
np.minimum(sample_data * gain_db_to_ratio(dbfs - max_dbfs(sample_data)),
|
|
1.0), -1.0)
|
|
|
|
|
|
def _load_json_cmvn(json_cmvn_file):
|
|
""" Load the json format cmvn stats file and calculate cmvn
|
|
|
|
Args:
|
|
json_cmvn_file: cmvn stats file in json format
|
|
|
|
Returns:
|
|
a numpy array of [means, vars]
|
|
"""
|
|
with open(json_cmvn_file) as f:
|
|
cmvn_stats = json.load(f)
|
|
|
|
means = cmvn_stats['mean_stat']
|
|
variance = cmvn_stats['var_stat']
|
|
count = cmvn_stats['frame_num']
|
|
for i in range(len(means)):
|
|
means[i] /= count
|
|
variance[i] = variance[i] / count - means[i] * means[i]
|
|
if variance[i] < 1.0e-20:
|
|
variance[i] = 1.0e-20
|
|
variance[i] = 1.0 / math.sqrt(variance[i])
|
|
cmvn = np.array([means, variance])
|
|
return cmvn
|
|
|
|
|
|
def _load_kaldi_cmvn(kaldi_cmvn_file):
|
|
""" Load the kaldi format cmvn stats file and calculate cmvn
|
|
|
|
Args:
|
|
kaldi_cmvn_file: kaldi text style global cmvn file, which
|
|
is generated by:
|
|
compute-cmvn-stats --binary=false scp:feats.scp global_cmvn
|
|
|
|
Returns:
|
|
a numpy array of [means, vars]
|
|
"""
|
|
means = []
|
|
variance = []
|
|
with open(kaldi_cmvn_file, 'r') as fid:
|
|
# kaldi binary file start with '\0B'
|
|
if fid.read(2) == '\0B':
|
|
logger.error('kaldi cmvn binary file is not supported, please '
|
|
'recompute it by: compute-cmvn-stats --binary=false '
|
|
' scp:feats.scp global_cmvn')
|
|
sys.exit(1)
|
|
fid.seek(0)
|
|
arr = fid.read().split()
|
|
assert (arr[0] == '[')
|
|
assert (arr[-2] == '0')
|
|
assert (arr[-1] == ']')
|
|
feat_dim = int((len(arr) - 2 - 2) / 2)
|
|
for i in range(1, feat_dim + 1):
|
|
means.append(float(arr[i]))
|
|
count = float(arr[feat_dim + 1])
|
|
for i in range(feat_dim + 2, 2 * feat_dim + 2):
|
|
variance.append(float(arr[i]))
|
|
|
|
for i in range(len(means)):
|
|
means[i] /= count
|
|
variance[i] = variance[i] / count - means[i] * means[i]
|
|
if variance[i] < 1.0e-20:
|
|
variance[i] = 1.0e-20
|
|
variance[i] = 1.0 / math.sqrt(variance[i])
|
|
cmvn = np.array([means, variance])
|
|
return cmvn
|
|
|
|
|
|
def load_cmvn(cmvn_file: str, filetype: str):
|
|
"""load cmvn from file.
|
|
|
|
Args:
|
|
cmvn_file (str): cmvn path.
|
|
filetype (str): file type, optional[npz, json, kaldi].
|
|
|
|
Raises:
|
|
ValueError: file type not support.
|
|
|
|
Returns:
|
|
Tuple[np.ndarray, np.ndarray]: mean, istd
|
|
"""
|
|
assert filetype in ['npz', 'json', 'kaldi'], filetype
|
|
filetype = filetype.lower()
|
|
if filetype == "json":
|
|
cmvn = _load_json_cmvn(cmvn_file)
|
|
elif filetype == "kaldi":
|
|
cmvn = _load_kaldi_cmvn(cmvn_file)
|
|
elif filetype == "npz":
|
|
eps = 1e-14
|
|
npzfile = np.load(cmvn_file)
|
|
mean = np.squeeze(npzfile["mean"])
|
|
std = np.squeeze(npzfile["std"])
|
|
istd = 1 / (std + eps)
|
|
cmvn = [mean, istd]
|
|
else:
|
|
raise ValueError(f"cmvn file type no support: {filetype}")
|
|
return cmvn[0], cmvn[1]
|
|
|
|
|
|
def convert_samples_to_float32(samples):
|
|
"""Convert sample type to float32.
|
|
|
|
Audio sample type is usually integer or float-point.
|
|
Integers will be scaled to [-1, 1] in float32.
|
|
|
|
PCM16 -> PCM32
|
|
"""
|
|
float32_samples = samples.astype('float32')
|
|
if samples.dtype in np.sctypes['int']:
|
|
bits = np.iinfo(samples.dtype).bits
|
|
float32_samples *= (1. / 2**(bits - 1))
|
|
elif samples.dtype in np.sctypes['float']:
|
|
pass
|
|
else:
|
|
raise TypeError("Unsupported sample type: %s." % samples.dtype)
|
|
return float32_samples
|
|
|
|
|
|
def convert_samples_from_float32(samples, dtype):
|
|
"""Convert sample type from float32 to dtype.
|
|
|
|
Audio sample type is usually integer or float-point. For integer
|
|
type, float32 will be rescaled from [-1, 1] to the maximum range
|
|
supported by the integer type.
|
|
|
|
PCM32 -> PCM16
|
|
"""
|
|
dtype = np.dtype(dtype)
|
|
output_samples = samples.copy()
|
|
if dtype in np.sctypes['int']:
|
|
bits = np.iinfo(dtype).bits
|
|
output_samples *= (2**(bits - 1) / 1.)
|
|
min_val = np.iinfo(dtype).min
|
|
max_val = np.iinfo(dtype).max
|
|
output_samples[output_samples > max_val] = max_val
|
|
output_samples[output_samples < min_val] = min_val
|
|
elif samples.dtype in np.sctypes['float']:
|
|
min_val = np.finfo(dtype).min
|
|
max_val = np.finfo(dtype).max
|
|
output_samples[output_samples > max_val] = max_val
|
|
output_samples[output_samples < min_val] = min_val
|
|
else:
|
|
raise TypeError("Unsupported sample type: %s." % samples.dtype)
|
|
return output_samples.astype(dtype)
|