You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/kaldi/decoder/lattice-faster-decoder.cc

1017 lines
42 KiB

// decoder/lattice-faster-decoder.cc
// Copyright 2009-2012 Microsoft Corporation Mirko Hannemann
// 2013-2018 Johns Hopkins University (Author: Daniel Povey)
// 2014 Guoguo Chen
// 2018 Zhehuai Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "decoder/lattice-faster-decoder.h"
#include "lat/lattice-functions.h"
namespace kaldi {
// instantiate this class once for each thing you have to decode.
template <typename FST, typename Token>
LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl(
const FST &fst, const LatticeFasterDecoderConfig &config)
: fst_(&fst),
delete_fst_(false),
config_(config),
num_toks_(0),
token_pool_(config.memory_pool_tokens_block_size),
forward_link_pool_(config.memory_pool_links_block_size) {
config.Check();
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
}
template <typename FST, typename Token>
LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl(
const LatticeFasterDecoderConfig &config, FST *fst)
: fst_(fst),
delete_fst_(true),
config_(config),
num_toks_(0),
token_pool_(config.memory_pool_tokens_block_size),
forward_link_pool_(config.memory_pool_links_block_size) {
config.Check();
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
}
template <typename FST, typename Token>
LatticeFasterDecoderTpl<FST, Token>::~LatticeFasterDecoderTpl() {
DeleteElems(toks_.Clear());
ClearActiveTokens();
if (delete_fst_) delete fst_;
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::InitDecoding() {
// clean up from last time:
DeleteElems(toks_.Clear());
cost_offsets_.clear();
ClearActiveTokens();
warned_ = false;
num_toks_ = 0;
decoding_finalized_ = false;
final_costs_.clear();
StateId start_state = fst_->Start();
KALDI_ASSERT(start_state != fst::kNoStateId);
active_toks_.resize(1);
Token *start_tok =
new (token_pool_.Allocate()) Token(0.0, 0.0, NULL, NULL, NULL);
active_toks_[0].toks = start_tok;
toks_.Insert(start_state, start_tok);
num_toks_++;
ProcessNonemitting(config_.beam);
}
// Returns true if any kind of traceback is available (not necessarily from
// a final state). It should only very rarely return false; this indicates
// an unusual search error.
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::Decode(DecodableInterface *decodable) {
InitDecoding();
// We use 1-based indexing for frames in this decoder (if you view it in
// terms of features), but note that the decodable object uses zero-based
// numbering, which we have to correct for when we call it.
AdvanceDecoding(decodable);
FinalizeDecoding();
// Returns true if we have any kind of traceback available (not necessarily
// to the end state; query ReachedFinal() for that).
return !active_toks_.empty() && active_toks_.back().toks != NULL;
}
// Outputs an FST corresponding to the single best path through the lattice.
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::GetBestPath(Lattice *olat,
bool use_final_probs) const {
Lattice raw_lat;
GetRawLattice(&raw_lat, use_final_probs);
ShortestPath(raw_lat, olat);
return (olat->NumStates() != 0);
}
// Outputs an FST corresponding to the raw, state-level lattice
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::GetRawLattice(
Lattice *ofst,
bool use_final_probs) const {
typedef LatticeArc Arc;
typedef Arc::StateId StateId;
typedef Arc::Weight Weight;
typedef Arc::Label Label;
// Note: you can't use the old interface (Decode()) if you want to
// get the lattice with use_final_probs = false. You'd have to do
// InitDecoding() and then AdvanceDecoding().
if (decoding_finalized_ && !use_final_probs)
KALDI_ERR << "You cannot call FinalizeDecoding() and then call "
<< "GetRawLattice() with use_final_probs == false";
unordered_map<Token*, BaseFloat> final_costs_local;
const unordered_map<Token*, BaseFloat> &final_costs =
(decoding_finalized_ ? final_costs_ : final_costs_local);
if (!decoding_finalized_ && use_final_probs)
ComputeFinalCosts(&final_costs_local, NULL, NULL);
ofst->DeleteStates();
// num-frames plus one (since frames are one-based, and we have
// an extra frame for the start-state).
int32 num_frames = active_toks_.size() - 1;
KALDI_ASSERT(num_frames > 0);
const int32 bucket_count = num_toks_/2 + 3;
unordered_map<Token*, StateId> tok_map(bucket_count);
// First create all states.
std::vector<Token*> token_list;
for (int32 f = 0; f <= num_frames; f++) {
if (active_toks_[f].toks == NULL) {
KALDI_WARN << "GetRawLattice: no tokens active on frame " << f
<< ": not producing lattice.\n";
return false;
}
TopSortTokens(active_toks_[f].toks, &token_list);
for (size_t i = 0; i < token_list.size(); i++)
if (token_list[i] != NULL)
tok_map[token_list[i]] = ofst->AddState();
}
// The next statement sets the start state of the output FST. Because we
// topologically sorted the tokens, state zero must be the start-state.
ofst->SetStart(0);
KALDI_VLOG(4) << "init:" << num_toks_/2 + 3 << " buckets:"
<< tok_map.bucket_count() << " load:" << tok_map.load_factor()
<< " max:" << tok_map.max_load_factor();
// Now create all arcs.
for (int32 f = 0; f <= num_frames; f++) {
for (Token *tok = active_toks_[f].toks; tok != NULL; tok = tok->next) {
StateId cur_state = tok_map[tok];
for (ForwardLinkT *l = tok->links;
l != NULL;
l = l->next) {
typename unordered_map<Token*, StateId>::const_iterator
iter = tok_map.find(l->next_tok);
StateId nextstate = iter->second;
KALDI_ASSERT(iter != tok_map.end());
BaseFloat cost_offset = 0.0;
if (l->ilabel != 0) { // emitting..
KALDI_ASSERT(f >= 0 && f < cost_offsets_.size());
cost_offset = cost_offsets_[f];
}
Arc arc(l->ilabel, l->olabel,
Weight(l->graph_cost, l->acoustic_cost - cost_offset),
nextstate);
ofst->AddArc(cur_state, arc);
}
if (f == num_frames) {
if (use_final_probs && !final_costs.empty()) {
typename unordered_map<Token*, BaseFloat>::const_iterator
iter = final_costs.find(tok);
if (iter != final_costs.end())
ofst->SetFinal(cur_state, LatticeWeight(iter->second, 0));
} else {
ofst->SetFinal(cur_state, LatticeWeight::One());
}
}
}
}
return (ofst->NumStates() > 0);
}
// This function is now deprecated, since now we do determinization from outside
// the LatticeFasterDecoder class. Outputs an FST corresponding to the
// lattice-determinized lattice (one path per word sequence).
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::GetLattice(CompactLattice *ofst,
bool use_final_probs) const {
Lattice raw_fst;
GetRawLattice(&raw_fst, use_final_probs);
Invert(&raw_fst); // make it so word labels are on the input.
// (in phase where we get backward-costs).
fst::ILabelCompare<LatticeArc> ilabel_comp;
ArcSort(&raw_fst, ilabel_comp); // sort on ilabel; makes
// lattice-determinization more efficient.
fst::DeterminizeLatticePrunedOptions lat_opts;
lat_opts.max_mem = config_.det_opts.max_mem;
DeterminizeLatticePruned(raw_fst, config_.lattice_beam, ofst, lat_opts);
raw_fst.DeleteStates(); // Free memory-- raw_fst no longer needed.
Connect(ofst); // Remove unreachable states... there might be
// a small number of these, in some cases.
// Note: if something went wrong and the raw lattice was empty,
// we should still get to this point in the code without warnings or failures.
return (ofst->NumStates() != 0);
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PossiblyResizeHash(size_t num_toks) {
size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
* config_.hash_ratio);
if (new_sz > toks_.Size()) {
toks_.SetSize(new_sz);
}
}
/*
A note on the definition of extra_cost.
extra_cost is used in pruning tokens, to save memory.
extra_cost can be thought of as a beta (backward) cost assuming
we had set the betas on currently-active tokens to all be the negative
of the alphas for those tokens. (So all currently active tokens would
be on (tied) best paths).
We can use the extra_cost to accurately prune away tokens that we know will
never appear in the lattice. If the extra_cost is greater than the desired
lattice beam, the token would provably never appear in the lattice, so we can
prune away the token.
(Note: we don't update all the extra_costs every time we update a frame; we
only do it every 'config_.prune_interval' frames).
*/
// FindOrAddToken either locates a token in hash of toks_,
// or if necessary inserts a new, empty token (i.e. with no forward links)
// for the current frame. [note: it's inserted if necessary into hash toks_
// and also into the singly linked list of tokens active on this frame
// (whose head is at active_toks_[frame]).
template <typename FST, typename Token>
inline typename LatticeFasterDecoderTpl<FST, Token>::Elem*
LatticeFasterDecoderTpl<FST, Token>::FindOrAddToken(
StateId state, int32 frame_plus_one, BaseFloat tot_cost,
Token *backpointer, bool *changed) {
// Returns the Token pointer. Sets "changed" (if non-NULL) to true
// if the token was newly created or the cost changed.
KALDI_ASSERT(frame_plus_one < active_toks_.size());
Token *&toks = active_toks_[frame_plus_one].toks;
Elem *e_found = toks_.Insert(state, NULL);
if (e_found->val == NULL) { // no such token presently.
const BaseFloat extra_cost = 0.0;
// tokens on the currently final frame have zero extra_cost
// as any of them could end up
// on the winning path.
Token *new_tok = new (token_pool_.Allocate())
Token(tot_cost, extra_cost, NULL, toks, backpointer);
// NULL: no forward links yet
toks = new_tok;
num_toks_++;
e_found->val = new_tok;
if (changed) *changed = true;
return e_found;
} else {
Token *tok = e_found->val; // There is an existing Token for this state.
if (tok->tot_cost > tot_cost) { // replace old token
tok->tot_cost = tot_cost;
// SetBackpointer() just does tok->backpointer = backpointer in
// the case where Token == BackpointerToken, else nothing.
tok->SetBackpointer(backpointer);
// we don't allocate a new token, the old stays linked in active_toks_
// we only replace the tot_cost
// in the current frame, there are no forward links (and no extra_cost)
// only in ProcessNonemitting we have to delete forward links
// in case we visit a state for the second time
// those forward links, that lead to this replaced token before:
// they remain and will hopefully be pruned later (PruneForwardLinks...)
if (changed) *changed = true;
} else {
if (changed) *changed = false;
}
return e_found;
}
}
// prunes outgoing links for all tokens in active_toks_[frame]
// it's called by PruneActiveTokens
// all links, that have link_extra_cost > lattice_beam are pruned
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinks(
int32 frame_plus_one, bool *extra_costs_changed,
bool *links_pruned, BaseFloat delta) {
// delta is the amount by which the extra_costs must change
// If delta is larger, we'll tend to go back less far
// toward the beginning of the file.
// extra_costs_changed is set to true if extra_cost was changed for any token
// links_pruned is set to true if any link in any token was pruned
*extra_costs_changed = false;
*links_pruned = false;
KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size());
if (active_toks_[frame_plus_one].toks == NULL) { // empty list; should not happen.
if (!warned_) {
KALDI_WARN << "No tokens alive [doing pruning].. warning first "
"time only for each utterance\n";
warned_ = true;
}
}
// We have to iterate until there is no more change, because the links
// are not guaranteed to be in topological order.
bool changed = true; // difference new minus old extra cost >= delta ?
while (changed) {
changed = false;
for (Token *tok = active_toks_[frame_plus_one].toks;
tok != NULL; tok = tok->next) {
ForwardLinkT *link, *prev_link = NULL;
// will recompute tok_extra_cost for tok.
BaseFloat tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
// tok_extra_cost is the best (min) of link_extra_cost of outgoing links
for (link = tok->links; link != NULL; ) {
// See if we need to excise this link...
Token *next_tok = link->next_tok;
BaseFloat link_extra_cost = next_tok->extra_cost +
((tok->tot_cost + link->acoustic_cost + link->graph_cost)
- next_tok->tot_cost); // difference in brackets is >= 0
// link_exta_cost is the difference in score between the best paths
// through link source state and through link destination state
KALDI_ASSERT(link_extra_cost == link_extra_cost); // check for NaN
if (link_extra_cost > config_.lattice_beam) { // excise link
ForwardLinkT *next_link = link->next;
if (prev_link != NULL) prev_link->next = next_link;
else tok->links = next_link;
forward_link_pool_.Free(link);
link = next_link; // advance link but leave prev_link the same.
*links_pruned = true;
} else { // keep the link and update the tok_extra_cost if needed.
if (link_extra_cost < 0.0) { // this is just a precaution.
if (link_extra_cost < -0.01)
KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
link_extra_cost = 0.0;
}
if (link_extra_cost < tok_extra_cost)
tok_extra_cost = link_extra_cost;
prev_link = link; // move to next link
link = link->next;
}
} // for all outgoing links
if (fabs(tok_extra_cost - tok->extra_cost) > delta)
changed = true; // difference new minus old is bigger than delta
tok->extra_cost = tok_extra_cost;
// will be +infinity or <= lattice_beam_.
// infinity indicates, that no forward link survived pruning
} // for all Token on active_toks_[frame]
if (changed) *extra_costs_changed = true;
// Note: it's theoretically possible that aggressive compiler
// optimizations could cause an infinite loop here for small delta and
// high-dynamic-range scores.
} // while changed
}
// PruneForwardLinksFinal is a version of PruneForwardLinks that we call
// on the final frame. If there are final tokens active, it uses
// the final-probs for pruning, otherwise it treats all tokens as final.
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinksFinal() {
KALDI_ASSERT(!active_toks_.empty());
int32 frame_plus_one = active_toks_.size() - 1;
if (active_toks_[frame_plus_one].toks == NULL) // empty list; should not happen.
KALDI_WARN << "No tokens alive at end of file";
typedef typename unordered_map<Token*, BaseFloat>::const_iterator IterType;
ComputeFinalCosts(&final_costs_, &final_relative_cost_, &final_best_cost_);
decoding_finalized_ = true;
// We call DeleteElems() as a nicety, not because it's really necessary;
// otherwise there would be a time, after calling PruneTokensForFrame() on the
// final frame, when toks_.GetList() or toks_.Clear() would contain pointers
// to nonexistent tokens.
DeleteElems(toks_.Clear());
// Now go through tokens on this frame, pruning forward links... may have to
// iterate a few times until there is no more change, because the list is not
// in topological order. This is a modified version of the code in
// PruneForwardLinks, but here we also take account of the final-probs.
bool changed = true;
BaseFloat delta = 1.0e-05;
while (changed) {
changed = false;
for (Token *tok = active_toks_[frame_plus_one].toks;
tok != NULL; tok = tok->next) {
ForwardLinkT *link, *prev_link = NULL;
// will recompute tok_extra_cost. It has a term in it that corresponds
// to the "final-prob", so instead of initializing tok_extra_cost to infinity
// below we set it to the difference between the (score+final_prob) of this token,
// and the best such (score+final_prob).
BaseFloat final_cost;
if (final_costs_.empty()) {
final_cost = 0.0;
} else {
IterType iter = final_costs_.find(tok);
if (iter != final_costs_.end())
final_cost = iter->second;
else
final_cost = std::numeric_limits<BaseFloat>::infinity();
}
BaseFloat tok_extra_cost = tok->tot_cost + final_cost - final_best_cost_;
// tok_extra_cost will be a "min" over either directly being final, or
// being indirectly final through other links, and the loop below may
// decrease its value:
for (link = tok->links; link != NULL; ) {
// See if we need to excise this link...
Token *next_tok = link->next_tok;
BaseFloat link_extra_cost = next_tok->extra_cost +
((tok->tot_cost + link->acoustic_cost + link->graph_cost)
- next_tok->tot_cost);
if (link_extra_cost > config_.lattice_beam) { // excise link
ForwardLinkT *next_link = link->next;
if (prev_link != NULL) prev_link->next = next_link;
else tok->links = next_link;
forward_link_pool_.Free(link);
link = next_link; // advance link but leave prev_link the same.
} else { // keep the link and update the tok_extra_cost if needed.
if (link_extra_cost < 0.0) { // this is just a precaution.
if (link_extra_cost < -0.01)
KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
link_extra_cost = 0.0;
}
if (link_extra_cost < tok_extra_cost)
tok_extra_cost = link_extra_cost;
prev_link = link;
link = link->next;
}
}
// prune away tokens worse than lattice_beam above best path. This step
// was not necessary in the non-final case because then, this case
// showed up as having no forward links. Here, the tok_extra_cost has
// an extra component relating to the final-prob.
if (tok_extra_cost > config_.lattice_beam)
tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
// to be pruned in PruneTokensForFrame
if (!ApproxEqual(tok->extra_cost, tok_extra_cost, delta))
changed = true;
tok->extra_cost = tok_extra_cost; // will be +infinity or <= lattice_beam_.
}
} // while changed
}
template <typename FST, typename Token>
BaseFloat LatticeFasterDecoderTpl<FST, Token>::FinalRelativeCost() const {
if (!decoding_finalized_) {
BaseFloat relative_cost;
ComputeFinalCosts(NULL, &relative_cost, NULL);
return relative_cost;
} else {
// we're not allowed to call that function if FinalizeDecoding() has
// been called; return a cached value.
return final_relative_cost_;
}
}
// Prune away any tokens on this frame that have no forward links.
// [we don't do this in PruneForwardLinks because it would give us
// a problem with dangling pointers].
// It's called by PruneActiveTokens if any forward links have been pruned
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneTokensForFrame(int32 frame_plus_one) {
KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size());
Token *&toks = active_toks_[frame_plus_one].toks;
if (toks == NULL)
KALDI_WARN << "No tokens alive [doing pruning]";
Token *tok, *next_tok, *prev_tok = NULL;
for (tok = toks; tok != NULL; tok = next_tok) {
next_tok = tok->next;
if (tok->extra_cost == std::numeric_limits<BaseFloat>::infinity()) {
// token is unreachable from end of graph; (no forward links survived)
// excise tok from list and delete tok.
if (prev_tok != NULL) prev_tok->next = tok->next;
else toks = tok->next;
token_pool_.Free(tok);
num_toks_--;
} else { // fetch next Token
prev_tok = tok;
}
}
}
// Go backwards through still-alive tokens, pruning them, starting not from
// the current frame (where we want to keep all tokens) but from the frame before
// that. We go backwards through the frames and stop when we reach a point
// where the delta-costs are not changing (and the delta controls when we consider
// a cost to have "not changed").
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneActiveTokens(BaseFloat delta) {
int32 cur_frame_plus_one = NumFramesDecoded();
int32 num_toks_begin = num_toks_;
// The index "f" below represents a "frame plus one", i.e. you'd have to subtract
// one to get the corresponding index for the decodable object.
for (int32 f = cur_frame_plus_one - 1; f >= 0; f--) {
// Reason why we need to prune forward links in this situation:
// (1) we have never pruned them (new TokenList)
// (2) we have not yet pruned the forward links to the next f,
// after any of those tokens have changed their extra_cost.
if (active_toks_[f].must_prune_forward_links) {
bool extra_costs_changed = false, links_pruned = false;
PruneForwardLinks(f, &extra_costs_changed, &links_pruned, delta);
if (extra_costs_changed && f > 0) // any token has changed extra_cost
active_toks_[f-1].must_prune_forward_links = true;
if (links_pruned) // any link was pruned
active_toks_[f].must_prune_tokens = true;
active_toks_[f].must_prune_forward_links = false; // job done
}
if (f+1 < cur_frame_plus_one && // except for last f (no forward links)
active_toks_[f+1].must_prune_tokens) {
PruneTokensForFrame(f+1);
active_toks_[f+1].must_prune_tokens = false;
}
}
KALDI_VLOG(4) << "PruneActiveTokens: pruned tokens from " << num_toks_begin
<< " to " << num_toks_;
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::ComputeFinalCosts(
unordered_map<Token*, BaseFloat> *final_costs,
BaseFloat *final_relative_cost,
BaseFloat *final_best_cost) const {
KALDI_ASSERT(!decoding_finalized_);
if (final_costs != NULL)
final_costs->clear();
const Elem *final_toks = toks_.GetList();
BaseFloat infinity = std::numeric_limits<BaseFloat>::infinity();
BaseFloat best_cost = infinity,
best_cost_with_final = infinity;
while (final_toks != NULL) {
StateId state = final_toks->key;
Token *tok = final_toks->val;
const Elem *next = final_toks->tail;
BaseFloat final_cost = fst_->Final(state).Value();
BaseFloat cost = tok->tot_cost,
cost_with_final = cost + final_cost;
best_cost = std::min(cost, best_cost);
best_cost_with_final = std::min(cost_with_final, best_cost_with_final);
if (final_costs != NULL && final_cost != infinity)
(*final_costs)[tok] = final_cost;
final_toks = next;
}
if (final_relative_cost != NULL) {
if (best_cost == infinity && best_cost_with_final == infinity) {
// Likely this will only happen if there are no tokens surviving.
// This seems the least bad way to handle it.
*final_relative_cost = infinity;
} else {
*final_relative_cost = best_cost_with_final - best_cost;
}
}
if (final_best_cost != NULL) {
if (best_cost_with_final != infinity) { // final-state exists.
*final_best_cost = best_cost_with_final;
} else { // no final-state exists.
*final_best_cost = best_cost;
}
}
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::AdvanceDecoding(DecodableInterface *decodable,
int32 max_num_frames) {
if (std::is_same<FST, fst::Fst<fst::StdArc> >::value) {
// if the type 'FST' is the FST base-class, then see if the FST type of fst_
// is actually VectorFst or ConstFst. If so, call the AdvanceDecoding()
// function after casting *this to the more specific type.
if (fst_->Type() == "const") {
LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token> *this_cast =
reinterpret_cast<LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token>* >(this);
this_cast->AdvanceDecoding(decodable, max_num_frames);
return;
} else if (fst_->Type() == "vector") {
LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token> *this_cast =
reinterpret_cast<LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token>* >(this);
this_cast->AdvanceDecoding(decodable, max_num_frames);
return;
}
}
KALDI_ASSERT(!active_toks_.empty() && !decoding_finalized_ &&
"You must call InitDecoding() before AdvanceDecoding");
int32 num_frames_ready = decodable->NumFramesReady();
// num_frames_ready must be >= num_frames_decoded, or else
// the number of frames ready must have decreased (which doesn't
// make sense) or the decodable object changed between calls
// (which isn't allowed).
KALDI_ASSERT(num_frames_ready >= NumFramesDecoded());
int32 target_frames_decoded = num_frames_ready;
if (max_num_frames >= 0)
target_frames_decoded = std::min(target_frames_decoded,
NumFramesDecoded() + max_num_frames);
while (NumFramesDecoded() < target_frames_decoded) {
if (NumFramesDecoded() % config_.prune_interval == 0) {
PruneActiveTokens(config_.lattice_beam * config_.prune_scale);
}
BaseFloat cost_cutoff = ProcessEmitting(decodable);
ProcessNonemitting(cost_cutoff);
}
}
// FinalizeDecoding() is a version of PruneActiveTokens that we call
// (optionally) on the final frame. Takes into account the final-prob of
// tokens. This function used to be called PruneActiveTokensFinal().
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::FinalizeDecoding() {
int32 final_frame_plus_one = NumFramesDecoded();
int32 num_toks_begin = num_toks_;
// PruneForwardLinksFinal() prunes final frame (with final-probs), and
// sets decoding_finalized_.
PruneForwardLinksFinal();
for (int32 f = final_frame_plus_one - 1; f >= 0; f--) {
bool b1, b2; // values not used.
BaseFloat dontcare = 0.0; // delta of zero means we must always update
PruneForwardLinks(f, &b1, &b2, dontcare);
PruneTokensForFrame(f + 1);
}
PruneTokensForFrame(0);
KALDI_VLOG(4) << "pruned tokens from " << num_toks_begin
<< " to " << num_toks_;
}
/// Gets the weight cutoff. Also counts the active tokens.
template <typename FST, typename Token>
BaseFloat LatticeFasterDecoderTpl<FST, Token>::GetCutoff(Elem *list_head, size_t *tok_count,
BaseFloat *adaptive_beam, Elem **best_elem) {
BaseFloat best_weight = std::numeric_limits<BaseFloat>::infinity();
// positive == high cost == bad.
size_t count = 0;
if (config_.max_active == std::numeric_limits<int32>::max() &&
config_.min_active == 0) {
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
BaseFloat w = static_cast<BaseFloat>(e->val->tot_cost);
if (w < best_weight) {
best_weight = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
if (adaptive_beam != NULL) *adaptive_beam = config_.beam;
return best_weight + config_.beam;
} else {
tmp_array_.clear();
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
BaseFloat w = e->val->tot_cost;
tmp_array_.push_back(w);
if (w < best_weight) {
best_weight = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
BaseFloat beam_cutoff = best_weight + config_.beam,
min_active_cutoff = std::numeric_limits<BaseFloat>::infinity(),
max_active_cutoff = std::numeric_limits<BaseFloat>::infinity();
KALDI_VLOG(6) << "Number of tokens active on frame " << NumFramesDecoded()
<< " is " << tmp_array_.size();
if (tmp_array_.size() > static_cast<size_t>(config_.max_active)) {
std::nth_element(tmp_array_.begin(),
tmp_array_.begin() + config_.max_active,
tmp_array_.end());
max_active_cutoff = tmp_array_[config_.max_active];
}
if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
if (adaptive_beam)
*adaptive_beam = max_active_cutoff - best_weight + config_.beam_delta;
return max_active_cutoff;
}
if (tmp_array_.size() > static_cast<size_t>(config_.min_active)) {
if (config_.min_active == 0) min_active_cutoff = best_weight;
else {
std::nth_element(tmp_array_.begin(),
tmp_array_.begin() + config_.min_active,
tmp_array_.size() > static_cast<size_t>(config_.max_active) ?
tmp_array_.begin() + config_.max_active :
tmp_array_.end());
min_active_cutoff = tmp_array_[config_.min_active];
}
}
if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
if (adaptive_beam)
*adaptive_beam = min_active_cutoff - best_weight + config_.beam_delta;
return min_active_cutoff;
} else {
*adaptive_beam = config_.beam;
return beam_cutoff;
}
}
}
template <typename FST, typename Token>
BaseFloat LatticeFasterDecoderTpl<FST, Token>::ProcessEmitting(
DecodableInterface *decodable) {
KALDI_ASSERT(active_toks_.size() > 0);
int32 frame = active_toks_.size() - 1; // frame is the frame-index
// (zero-based) used to get likelihoods
// from the decodable object.
active_toks_.resize(active_toks_.size() + 1);
Elem *final_toks = toks_.Clear(); // analogous to swapping prev_toks_ / cur_toks_
// in simple-decoder.h. Removes the Elems from
// being indexed in the hash in toks_.
Elem *best_elem = NULL;
BaseFloat adaptive_beam;
size_t tok_cnt;
BaseFloat cur_cutoff = GetCutoff(final_toks, &tok_cnt, &adaptive_beam, &best_elem);
KALDI_VLOG(6) << "Adaptive beam on frame " << NumFramesDecoded() << " is "
<< adaptive_beam;
PossiblyResizeHash(tok_cnt); // This makes sure the hash is always big enough.
BaseFloat next_cutoff = std::numeric_limits<BaseFloat>::infinity();
// pruning "online" before having seen all tokens
BaseFloat cost_offset = 0.0; // Used to keep probabilities in a good
// dynamic range.
// First process the best token to get a hopefully
// reasonably tight bound on the next cutoff. The only
// products of the next block are "next_cutoff" and "cost_offset".
if (best_elem) {
StateId state = best_elem->key;
Token *tok = best_elem->val;
cost_offset = - tok->tot_cost;
for (fst::ArcIterator<FST> aiter(*fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel != 0) { // propagate..
BaseFloat new_weight = arc.weight.Value() + cost_offset -
decodable->LogLikelihood(frame, arc.ilabel) + tok->tot_cost;
if (new_weight + adaptive_beam < next_cutoff)
next_cutoff = new_weight + adaptive_beam;
}
}
}
// Store the offset on the acoustic likelihoods that we're applying.
// Could just do cost_offsets_.push_back(cost_offset), but we
// do it this way as it's more robust to future code changes.
cost_offsets_.resize(frame + 1, 0.0);
cost_offsets_[frame] = cost_offset;
// the tokens are now owned here, in final_toks, and the hash is empty.
// 'owned' is a complex thing here; the point is we need to call DeleteElem
// on each elem 'e' to let toks_ know we're done with them.
for (Elem *e = final_toks, *e_tail; e != NULL; e = e_tail) {
// loop this way because we delete "e" as we go.
StateId state = e->key;
Token *tok = e->val;
if (tok->tot_cost <= cur_cutoff) {
for (fst::ArcIterator<FST> aiter(*fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel != 0) { // propagate..
BaseFloat ac_cost = cost_offset -
decodable->LogLikelihood(frame, arc.ilabel),
graph_cost = arc.weight.Value(),
cur_cost = tok->tot_cost,
tot_cost = cur_cost + ac_cost + graph_cost;
if (tot_cost >= next_cutoff) continue;
else if (tot_cost + adaptive_beam < next_cutoff)
next_cutoff = tot_cost + adaptive_beam; // prune by best current token
// Note: the frame indexes into active_toks_ are one-based,
// hence the + 1.
Elem *e_next = FindOrAddToken(arc.nextstate,
frame + 1, tot_cost, tok, NULL);
// NULL: no change indicator needed
// Add ForwardLink from tok to next_tok (put on head of list tok->links)
tok->links = new (forward_link_pool_.Allocate())
ForwardLinkT(e_next->val, arc.ilabel, arc.olabel, graph_cost,
ac_cost, tok->links);
}
} // for all arcs
}
e_tail = e->tail;
toks_.Delete(e); // delete Elem
}
return next_cutoff;
}
// static inline
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::DeleteForwardLinks(Token *tok) {
ForwardLinkT *l = tok->links, *m;
while (l != NULL) {
m = l->next;
forward_link_pool_.Free(l);
l = m;
}
tok->links = NULL;
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::ProcessNonemitting(BaseFloat cutoff) {
KALDI_ASSERT(!active_toks_.empty());
int32 frame = static_cast<int32>(active_toks_.size()) - 2;
// Note: "frame" is the time-index we just processed, or -1 if
// we are processing the nonemitting transitions before the
// first frame (called from InitDecoding()).
// Processes nonemitting arcs for one frame. Propagates within toks_.
// Note-- this queue structure is not very optimal as
// it may cause us to process states unnecessarily (e.g. more than once),
// but in the baseline code, turning this vector into a set to fix this
// problem did not improve overall speed.
KALDI_ASSERT(queue_.empty());
if (toks_.GetList() == NULL) {
if (!warned_) {
KALDI_WARN << "Error, no surviving tokens: frame is " << frame;
warned_ = true;
}
}
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
StateId state = e->key;
if (fst_->NumInputEpsilons(state) != 0)
queue_.push_back(e);
}
while (!queue_.empty()) {
const Elem *e = queue_.back();
queue_.pop_back();
StateId state = e->key;
Token *tok = e->val; // would segfault if e is a NULL pointer but this can't happen.
BaseFloat cur_cost = tok->tot_cost;
if (cur_cost >= cutoff) // Don't bother processing successors.
continue;
// If "tok" has any existing forward links, delete them,
// because we're about to regenerate them. This is a kind
// of non-optimality (remember, this is the simple decoder),
// but since most states are emitting it's not a huge issue.
DeleteForwardLinks(tok); // necessary when re-visiting
tok->links = NULL;
for (fst::ArcIterator<FST> aiter(*fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel == 0) { // propagate nonemitting only...
BaseFloat graph_cost = arc.weight.Value(),
tot_cost = cur_cost + graph_cost;
if (tot_cost < cutoff) {
bool changed;
Elem *e_new = FindOrAddToken(arc.nextstate, frame + 1, tot_cost,
tok, &changed);
tok->links = new (forward_link_pool_.Allocate()) ForwardLinkT(
e_new->val, 0, arc.olabel, graph_cost, 0, tok->links);
// "changed" tells us whether the new token has a different
// cost from before, or is new [if so, add into queue].
if (changed && fst_->NumInputEpsilons(arc.nextstate) != 0)
queue_.push_back(e_new);
}
}
} // for all arcs
} // while queue not empty
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::DeleteElems(Elem *list) {
for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
e_tail = e->tail;
toks_.Delete(e);
}
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::ClearActiveTokens() { // a cleanup routine, at utt end/begin
for (size_t i = 0; i < active_toks_.size(); i++) {
// Delete all tokens alive on this frame, and any forward
// links they may have.
for (Token *tok = active_toks_[i].toks; tok != NULL; ) {
DeleteForwardLinks(tok);
Token *next_tok = tok->next;
token_pool_.Free(tok);
num_toks_--;
tok = next_tok;
}
}
active_toks_.clear();
KALDI_ASSERT(num_toks_ == 0);
}
// static
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::TopSortTokens(
Token *tok_list, std::vector<Token*> *topsorted_list) {
unordered_map<Token*, int32> token2pos;
typedef typename unordered_map<Token*, int32>::iterator IterType;
int32 num_toks = 0;
for (Token *tok = tok_list; tok != NULL; tok = tok->next)
num_toks++;
int32 cur_pos = 0;
// We assign the tokens numbers num_toks - 1, ... , 2, 1, 0.
// This is likely to be in closer to topological order than
// if we had given them ascending order, because of the way
// new tokens are put at the front of the list.
for (Token *tok = tok_list; tok != NULL; tok = tok->next)
token2pos[tok] = num_toks - ++cur_pos;
unordered_set<Token*> reprocess;
for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter) {
Token *tok = iter->first;
int32 pos = iter->second;
for (ForwardLinkT *link = tok->links; link != NULL; link = link->next) {
if (link->ilabel == 0) {
// We only need to consider epsilon links, since non-epsilon links
// transition between frames and this function only needs to sort a list
// of tokens from a single frame.
IterType following_iter = token2pos.find(link->next_tok);
if (following_iter != token2pos.end()) { // another token on this frame,
// so must consider it.
int32 next_pos = following_iter->second;
if (next_pos < pos) { // reassign the position of the next Token.
following_iter->second = cur_pos++;
reprocess.insert(link->next_tok);
}
}
}
}
// In case we had previously assigned this token to be reprocessed, we can
// erase it from that set because it's "happy now" (we just processed it).
reprocess.erase(tok);
}
size_t max_loop = 1000000, loop_count; // max_loop is to detect epsilon cycles.
for (loop_count = 0;
!reprocess.empty() && loop_count < max_loop; ++loop_count) {
std::vector<Token*> reprocess_vec;
for (typename unordered_set<Token*>::iterator iter = reprocess.begin();
iter != reprocess.end(); ++iter)
reprocess_vec.push_back(*iter);
reprocess.clear();
for (typename std::vector<Token*>::iterator iter = reprocess_vec.begin();
iter != reprocess_vec.end(); ++iter) {
Token *tok = *iter;
int32 pos = token2pos[tok];
// Repeat the processing we did above (for comments, see above).
for (ForwardLinkT *link = tok->links; link != NULL; link = link->next) {
if (link->ilabel == 0) {
IterType following_iter = token2pos.find(link->next_tok);
if (following_iter != token2pos.end()) {
int32 next_pos = following_iter->second;
if (next_pos < pos) {
following_iter->second = cur_pos++;
reprocess.insert(link->next_tok);
}
}
}
}
}
}
KALDI_ASSERT(loop_count < max_loop && "Epsilon loops exist in your decoding "
"graph (this is not allowed!)");
topsorted_list->clear();
topsorted_list->resize(cur_pos, NULL); // create a list with NULLs in between.
for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter)
(*topsorted_list)[iter->second] = iter->first;
}
// Instantiate the template for the combination of token types and FST types
// that we'll need.
template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc>, decoder::StdToken>;
template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::StdToken >;
template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::StdToken >;
template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc> , decoder::BackpointerToken>;
template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::BackpointerToken >;
template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::BackpointerToken >;
} // end namespace kaldi.