You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/common/frontend/feature_cache.cc

84 lines
2.5 KiB

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/feature_cache.h"
namespace ppspeech {
using kaldi::BaseFloat;
using std::unique_ptr;
using std::vector;
FeatureCache::FeatureCache(size_t max_size,
unique_ptr<FrontendInterface> base_extractor) {
max_size_ = max_size;
base_extractor_ = std::move(base_extractor);
dim_ = base_extractor_->Dim();
}
void FeatureCache::Accept(const std::vector<kaldi::BaseFloat>& inputs) {
// read inputs
base_extractor_->Accept(inputs);
}
// pop feature chunk
bool FeatureCache::Read(std::vector<kaldi::BaseFloat>* feats) {
kaldi::Timer timer;
std::unique_lock<std::mutex> lock(mutex_);
// feed current data
if (cache_.empty()) {
bool result = false;
do {
result = Compute();
} while (result);
}
if (cache_.empty()) return false;
// read from cache
*feats = cache_.front();
cache_.pop();
VLOG(2) << "FeatureCache::Read cost: " << timer.Elapsed() << " sec.";
VLOG(1) << "FeatureCache::size : " << cache_.size();
return true;
}
// read all data from base_feature_extractor_ into cache_
bool FeatureCache::Compute() {
// compute and feed
vector<BaseFloat> feature;
bool result = base_extractor_->Read(&feature);
if (result == false || feature.size() == 0) return false;
kaldi::Timer timer;
int32 num_chunk = feature.size() / dim_;
VLOG(3) << "nframe computed: " << nframe_;
for (int chunk_idx = 0; chunk_idx < num_chunk; ++chunk_idx) {
int32 start = chunk_idx * dim_;
vector<BaseFloat> feature_chunk(feature.data() + start,
feature.data() + start + dim_);
// feed cache
cache_.push(feature_chunk);
++nframe_;
}
VLOG(2) << "FeatureCache::Compute cost: " << timer.Elapsed() << " sec. "
<< num_chunk << " feats.";
return true;
}
} // namespace ppspeech