You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
5.2 KiB
171 lines
5.2 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Contains the volume perturb augmentation model."""
|
|
import numpy as np
|
|
|
|
from deepspeech.frontend.augmentor.base import AugmentorBase
|
|
from deepspeech.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
class SpecAugmentor(AugmentorBase):
|
|
"""Augmentation model for Time warping, Frequency masking, Time masking.
|
|
|
|
SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition
|
|
https://arxiv.org/abs/1904.08779
|
|
|
|
SpecAugment on Large Scale Datasets
|
|
https://arxiv.org/abs/1912.05533
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
rng,
|
|
F,
|
|
T,
|
|
n_freq_masks,
|
|
n_time_masks,
|
|
p=1.0,
|
|
W=40,
|
|
adaptive_number_ratio=0,
|
|
adaptive_size_ratio=0,
|
|
max_n_time_masks=20):
|
|
"""SpecAugment class.
|
|
Args:
|
|
rng (random.Random): random generator object.
|
|
F (int): parameter for frequency masking
|
|
T (int): parameter for time masking
|
|
n_freq_masks (int): number of frequency masks
|
|
n_time_masks (int): number of time masks
|
|
p (float): parameter for upperbound of the time mask
|
|
W (int): parameter for time warping
|
|
adaptive_number_ratio (float): adaptive multiplicity ratio for time masking
|
|
adaptive_size_ratio (float): adaptive size ratio for time masking
|
|
max_n_time_masks (int): maximum number of time masking
|
|
"""
|
|
super().__init__()
|
|
self._rng = rng
|
|
|
|
self.W = W
|
|
self.F = F
|
|
self.T = T
|
|
self.n_freq_masks = n_freq_masks
|
|
self.n_time_masks = n_time_masks
|
|
self.p = p
|
|
#logger.info(f"specaug: F-{F}, T-{T}, F-n-{n_freq_masks}, T-n-{n_time_masks}")
|
|
|
|
# adaptive SpecAugment
|
|
self.adaptive_number_ratio = adaptive_number_ratio
|
|
self.adaptive_size_ratio = adaptive_size_ratio
|
|
self.max_n_time_masks = max_n_time_masks
|
|
|
|
if adaptive_number_ratio > 0:
|
|
self.n_time_masks = 0
|
|
logger.info('n_time_masks is set ot zero for adaptive SpecAugment.')
|
|
if adaptive_size_ratio > 0:
|
|
self.T = 0
|
|
logger.info('T is set to zero for adaptive SpecAugment.')
|
|
|
|
self._freq_mask = None
|
|
self._time_mask = None
|
|
|
|
def librispeech_basic(self):
|
|
self.W = 80
|
|
self.F = 27
|
|
self.T = 100
|
|
self.n_freq_masks = 1
|
|
self.n_time_masks = 1
|
|
self.p = 1.0
|
|
|
|
def librispeech_double(self):
|
|
self.W = 80
|
|
self.F = 27
|
|
self.T = 100
|
|
self.n_freq_masks = 2
|
|
self.n_time_masks = 2
|
|
self.p = 1.0
|
|
|
|
def switchboard_mild(self):
|
|
self.W = 40
|
|
self.F = 15
|
|
self.T = 70
|
|
self.n_freq_masks = 2
|
|
self.n_time_masks = 2
|
|
self.p = 0.2
|
|
|
|
def switchboard_strong(self):
|
|
self.W = 40
|
|
self.F = 27
|
|
self.T = 70
|
|
self.n_freq_masks = 2
|
|
self.n_time_masks = 2
|
|
self.p = 0.2
|
|
|
|
@property
|
|
def freq_mask(self):
|
|
return self._freq_mask
|
|
|
|
@property
|
|
def time_mask(self):
|
|
return self._time_mask
|
|
|
|
def time_warp(xs, W=40):
|
|
raise NotImplementedError
|
|
|
|
def mask_freq(self, xs, replace_with_zero=False):
|
|
n_bins = xs.shape[0]
|
|
for i in range(0, self.n_freq_masks):
|
|
f = int(self._rng.uniform(low=0, high=self.F))
|
|
f_0 = int(self._rng.uniform(low=0, high=n_bins - f))
|
|
xs[f_0:f_0 + f, :] = 0
|
|
assert f_0 <= f_0 + f
|
|
self._freq_mask = (f_0, f_0 + f)
|
|
return xs
|
|
|
|
def mask_time(self, xs, replace_with_zero=False):
|
|
n_frames = xs.shape[1]
|
|
|
|
if self.adaptive_number_ratio > 0:
|
|
n_masks = int(n_frames * self.adaptive_number_ratio)
|
|
n_masks = min(n_masks, self.max_n_time_masks)
|
|
else:
|
|
n_masks = self.n_time_masks
|
|
|
|
if self.adaptive_size_ratio > 0:
|
|
T = self.adaptive_size_ratio * n_frames
|
|
else:
|
|
T = self.T
|
|
|
|
for i in range(n_masks):
|
|
t = int(self._rng.uniform(low=0, high=T))
|
|
t = min(t, int(n_frames * self.p))
|
|
t_0 = int(self._rng.uniform(low=0, high=n_frames - t))
|
|
xs[:, t_0:t_0 + t] = 0
|
|
assert t_0 <= t_0 + t
|
|
self._time_mask = (t_0, t_0 + t)
|
|
return xs
|
|
|
|
def transform_feature(self, xs: np.ndarray):
|
|
"""
|
|
Args:
|
|
xs (FloatTensor): `[F, T]`
|
|
Returns:
|
|
xs (FloatTensor): `[F, T]`
|
|
"""
|
|
# xs = self.time_warp(xs)
|
|
xs = self.mask_freq(xs)
|
|
xs = self.mask_time(xs)
|
|
return xs
|