You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/models/wav2vec2/wav2vec2_ASR.py

248 lines
10 KiB

import numpy as np
import os
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlespeech.s2t.models.wav2vec2.modules.modeling_wav2vec2 import Wav2Vec2ConfigPure
from paddlespeech.s2t.models.wav2vec2.modules.modeling_wav2vec2 import Wav2Vec2Model
from paddlespeech.s2t.modules.mask import make_pad_mask
from paddlespeech.s2t.utils.utility import log_add
from collections import defaultdict
from paddlespeech.s2t.models.wav2vec2.modules.VanillaNN import VanillaNN
from paddlespeech.s2t.modules.ctc import CTCDecoderBase as CTC
from paddlespeech.s2t.utils.ctc_utils import remove_duplicates_and_blank
from yacs.config import CfgNode
class Wav2vec2ASR(nn.Layer):
def __init__(self, config: dict):
super().__init__()
wav2vec2_config = Wav2Vec2ConfigPure(config)
wav2vec2 = Wav2Vec2Model(wav2vec2_config)
model_dict = paddle.load(config.wav2vec2_params_path)
wav2vec2.set_state_dict(model_dict)
self.normalize_wav = config.normalize_wav
self.output_norm = config.output_norm
if config.freeze_wav2vec2:
wav2vec2.eval()
for parm in wav2vec2.parameters():
parm.trainable = False
self.wav2vec2 = wav2vec2
self.enc = VanillaNN(input_shape=[None,None,wav2vec2_config.hidden_size], activation=nn.LeakyReLU, dnn_blocks=config.dnn_blocks, dnn_neurons=config.dnn_neurons)
self.ctc = CTC(odim=config.output_dim, enc_n_units=config.dnn_neurons, blank_id=config.blank_id, dropout_rate=config.ctc_dropout_rate, reduction=True)
def forward(self, wav, wavs_lens_rate, target, target_lens_rate):
if self.normalize_wav:
wav = F.layer_norm(wav, wav.shape[1:])
# Extract wav2vec output
out = self.wav2vec2(wav)[0]
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape[1:])
feats = out
x = self.enc(feats)
x_lens = (wavs_lens_rate * x.shape[1]).round().astype(paddle.int64)
target_lens = (target_lens_rate * target.shape[1]).round().astype(paddle.int64)
ctc_loss = self.ctc(x, x_lens, target, target_lens)
return ctc_loss
@paddle.no_grad()
def decode(self,
feats: paddle.Tensor,
text_feature: Dict[str, int],
decoding_method: str,
beam_size: int):
batch_size = feats.shape[0]
if decoding_method is 'ctc_prefix_beam_search' and batch_size > 1:
logger.error(
f'decoding mode {decoding_method} must be running with batch_size == 1'
)
logger.error(f"current batch_size is {batch_size}")
sys.exit(1)
if decoding_method == 'ctc_greedy_search':
hyps = self.ctc_greedy_search(feats)
res = [text_feature.defeaturize(hyp) for hyp in hyps]
res_tokenids = [hyp for hyp in hyps]
# ctc_prefix_beam_search and attention_rescoring only return one
# result in List[int], change it to List[List[int]] for compatible
# with other batch decoding mode
elif decoding_method == 'ctc_prefix_beam_search':
assert feats.shape[0] == 1
hyp = self.ctc_prefix_beam_search(
feats,
beam_size)
res = [text_feature.defeaturize(hyp)]
res_tokenids = [hyp]
else:
raise ValueError(f"wav2vec2 not support decoding method: {decoding_method}")
return res, res_tokenids
@classmethod
def from_config(cls, config):
model = cls(config)
return model
def ctc_greedy_search(
self, wav) -> List[List[int]]:
""" Apply CTC greedy search
Args:
speech (paddle.Tensor): (batch, max_len)
speech_length (paddle.Tensor): (batch, )
Returns:
List[List[int]]: best path result
"""
batch_size = wav.shape[0]
wav = wav[:,:,0]
if self.normalize_wav:
wav = F.layer_norm(wav, wav.shape[1:])
# Extract wav2vec output
out = self.wav2vec2(wav)[0]
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape[1:])
feats = out
x = self.enc(feats)
x_lens = x.shape[1]
ctc_probs = self.ctc.log_softmax(x) # (B, maxlen, vocab_size)
topk_prob, topk_index = ctc_probs.topk(1, axis=2) # (B, maxlen, 1)
topk_index = topk_index.view(batch_size, x_lens) # (B, maxlen)
hyps = [hyp.tolist() for hyp in topk_index]
hyps = [remove_duplicates_and_blank(hyp) for hyp in hyps]
return hyps
def _ctc_prefix_beam_search(
self, wav, beam_size, blank_id: int=0, ) -> Tuple[List[Tuple[int, float]], paddle.Tensor]:
""" CTC prefix beam search inner implementation
Args:
speech (paddle.Tensor): (batch, max_len, feat_dim)
speech_length (paddle.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[Tuple[int, float]]: nbest results, (N,1), (text, likelihood)
paddle.Tensor: encoder output, (1, max_len, encoder_dim),
it will be used for rescoring in attention rescoring mode
"""
wav = wav[:,:,0]
if self.normalize_wav:
wav = F.layer_norm(wav, wav.shape[1:])
# Extract wav2vec output
out = self.wav2vec2(wav)[0]
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape[1:])
feats = out
x = self.enc(feats)
maxlen = x.shape[1]
ctc_probs = self.ctc.log_softmax(x) # (1, maxlen, vocab_size)
ctc_probs = ctc_probs.squeeze(0)
# cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score))
# blank_ending_score and none_blank_ending_score in ln domain
cur_hyps = [(tuple(), (0.0, -float('inf')))]
# 2. CTC beam search step by step
for t in range(0, maxlen):
logp = ctc_probs[t] # (vocab_size,)
# key: prefix, value (pb, pnb), default value(-inf, -inf)
next_hyps = defaultdict(lambda: (-float('inf'), -float('inf')))
# 2.1 First beam prune: select topk best
top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,)
for s in top_k_index:
s = s.item()
ps = logp[s].item()
for prefix, (pb, pnb) in cur_hyps:
last = prefix[-1] if len(prefix) > 0 else None
if s == blank_id: # blank
n_pb, n_pnb = next_hyps[prefix]
n_pb = log_add([n_pb, pb + ps, pnb + ps])
next_hyps[prefix] = (n_pb, n_pnb)
elif s == last:
# Update *ss -> *s;
n_pb, n_pnb = next_hyps[prefix]
n_pnb = log_add([n_pnb, pnb + ps])
next_hyps[prefix] = (n_pb, n_pnb)
# Update *s-s -> *ss, - is for blank
n_prefix = prefix + (s, )
n_pb, n_pnb = next_hyps[n_prefix]
n_pnb = log_add([n_pnb, pb + ps])
next_hyps[n_prefix] = (n_pb, n_pnb)
else:
n_prefix = prefix + (s, )
n_pb, n_pnb = next_hyps[n_prefix]
n_pnb = log_add([n_pnb, pb + ps, pnb + ps])
next_hyps[n_prefix] = (n_pb, n_pnb)
# 2.2 Second beam prune
next_hyps = sorted(
next_hyps.items(),
key=lambda x: log_add(list(x[1])),
reverse=True)
cur_hyps = next_hyps[:beam_size]
hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in cur_hyps]
return hyps
def ctc_prefix_beam_search(self, wav, beam_size) -> List[int]:
""" Apply CTC prefix beam search
Args:
speech (paddle.Tensor): (batch, max_len, feat_dim)
speech_length (paddle.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[int]: CTC prefix beam search nbest results
"""
hyps = self._ctc_prefix_beam_search(
wav, beam_size)
return hyps[0][0]
# @jit.to_static
# def ctc_activation(self, xs: paddle.Tensor) -> paddle.Tensor:
# """ Export interface for c++ call, apply linear transform and log
# softmax before ctc
# Args:
# xs (paddle.Tensor): encoder output, (B, T, D)
# Returns:
# paddle.Tensor: activation before ctc
# """
# return self.ctc.log_softmax(xs)
# def _get_data(self):
# data_dir = "data"
# wavs = np.load(os.path.join(data_dir, "wavs.npy"))
# wavs_lens = np.load(os.path.join(data_dir, "wavs_lens.npy"))
# tokens = np.load(os.path.join(data_dir, "tokens.npy"))
# tokens_lens = np.load(os.path.join(data_dir, "tokens_lens.npy"))
# batch = (paddle.to_tensor(wavs), paddle.to_tensor(wavs_lens, dtype='float32'),
# paddle.to_tensor(tokens, dtype='int32'), paddle.to_tensor(tokens_lens, dtype='float32'))
# return batch