You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
421 lines
16 KiB
421 lines
16 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Contains DeepSpeech2 model."""
|
|
import time
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import distributed as dist
|
|
from paddle.io import DataLoader
|
|
from yacs.config import CfgNode
|
|
|
|
from deepspeech.io.collator import SpeechCollator
|
|
from deepspeech.io.dataset import ManifestDataset
|
|
from deepspeech.io.sampler import SortagradBatchSampler
|
|
from deepspeech.io.sampler import SortagradDistributedBatchSampler
|
|
from deepspeech.models.deepspeech2 import DeepSpeech2InferModel
|
|
from deepspeech.models.deepspeech2 import DeepSpeech2Model
|
|
from deepspeech.training.gradclip import ClipGradByGlobalNormWithLog
|
|
from deepspeech.training.trainer import Trainer
|
|
from deepspeech.utils import error_rate
|
|
from deepspeech.utils import layer_tools
|
|
from deepspeech.utils import mp_tools
|
|
from deepspeech.utils.log import Autolog
|
|
from deepspeech.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
class DeepSpeech2Trainer(Trainer):
|
|
@classmethod
|
|
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
|
|
# training config
|
|
default = CfgNode(
|
|
dict(
|
|
lr=5e-4, # learning rate
|
|
lr_decay=1.0, # learning rate decay
|
|
weight_decay=1e-6, # the coeff of weight decay
|
|
global_grad_clip=5.0, # the global norm clip
|
|
n_epoch=50, # train epochs
|
|
))
|
|
|
|
if config is not None:
|
|
config.merge_from_other_cfg(default)
|
|
return default
|
|
|
|
def __init__(self, config, args):
|
|
super().__init__(config, args)
|
|
|
|
def train_batch(self, batch_index, batch_data, msg):
|
|
start = time.time()
|
|
utt, audio, audio_len, text, text_len = batch_data
|
|
loss = self.model(audio, audio_len, text, text_len)
|
|
loss.backward()
|
|
layer_tools.print_grads(self.model, print_func=None)
|
|
self.optimizer.step()
|
|
self.optimizer.clear_grad()
|
|
iteration_time = time.time() - start
|
|
|
|
losses_np = {
|
|
'train_loss': float(loss),
|
|
}
|
|
msg += "train time: {:>.3f}s, ".format(iteration_time)
|
|
msg += "batch size: {}, ".format(self.config.collator.batch_size)
|
|
msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_np.items())
|
|
logger.info(msg)
|
|
|
|
if dist.get_rank() == 0 and self.visualizer:
|
|
for k, v in losses_np.items():
|
|
self.visualizer.add_scalar("train/{}".format(k), v,
|
|
self.iteration)
|
|
self.iteration += 1
|
|
|
|
@paddle.no_grad()
|
|
def valid(self):
|
|
logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
|
|
self.model.eval()
|
|
valid_losses = defaultdict(list)
|
|
num_seen_utts = 1
|
|
total_loss = 0.0
|
|
for i, batch in enumerate(self.valid_loader):
|
|
utt, audio, audio_len, text, text_len = batch
|
|
loss = self.model(audio, audio_len, text, text_len)
|
|
if paddle.isfinite(loss):
|
|
num_utts = batch[1].shape[0]
|
|
num_seen_utts += num_utts
|
|
total_loss += float(loss) * num_utts
|
|
valid_losses['val_loss'].append(float(loss))
|
|
|
|
if (i + 1) % self.config.training.log_interval == 0:
|
|
valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
|
|
valid_dump['val_history_loss'] = total_loss / num_seen_utts
|
|
|
|
# logging
|
|
msg = f"Valid: Rank: {dist.get_rank()}, "
|
|
msg += "epoch: {}, ".format(self.epoch)
|
|
msg += "step: {}, ".format(self.iteration)
|
|
msg += "batch : {}/{}, ".format(i + 1, len(self.valid_loader))
|
|
msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in valid_dump.items())
|
|
logger.info(msg)
|
|
|
|
logger.info('Rank {} Val info val_loss {}'.format(
|
|
dist.get_rank(), total_loss / num_seen_utts))
|
|
return total_loss, num_seen_utts
|
|
|
|
def setup_model(self):
|
|
config = self.config
|
|
model = DeepSpeech2Model(
|
|
feat_size=self.train_loader.collate_fn.feature_size,
|
|
dict_size=self.train_loader.collate_fn.vocab_size,
|
|
num_conv_layers=config.model.num_conv_layers,
|
|
num_rnn_layers=config.model.num_rnn_layers,
|
|
rnn_size=config.model.rnn_layer_size,
|
|
use_gru=config.model.use_gru,
|
|
share_rnn_weights=config.model.share_rnn_weights)
|
|
|
|
if self.parallel:
|
|
model = paddle.DataParallel(model)
|
|
|
|
logger.info(f"{model}")
|
|
layer_tools.print_params(model, logger.info)
|
|
|
|
grad_clip = ClipGradByGlobalNormWithLog(
|
|
config.training.global_grad_clip)
|
|
lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
|
|
learning_rate=config.training.lr,
|
|
gamma=config.training.lr_decay,
|
|
verbose=True)
|
|
optimizer = paddle.optimizer.Adam(
|
|
learning_rate=lr_scheduler,
|
|
parameters=model.parameters(),
|
|
weight_decay=paddle.regularizer.L2Decay(
|
|
config.training.weight_decay),
|
|
grad_clip=grad_clip)
|
|
|
|
self.model = model
|
|
self.optimizer = optimizer
|
|
self.lr_scheduler = lr_scheduler
|
|
logger.info("Setup model/optimizer/lr_scheduler!")
|
|
|
|
def setup_dataloader(self):
|
|
config = self.config.clone()
|
|
config.defrost()
|
|
config.collator.keep_transcription_text = False
|
|
|
|
config.data.manifest = config.data.train_manifest
|
|
train_dataset = ManifestDataset.from_config(config)
|
|
|
|
config.data.manifest = config.data.dev_manifest
|
|
dev_dataset = ManifestDataset.from_config(config)
|
|
|
|
if self.parallel:
|
|
batch_sampler = SortagradDistributedBatchSampler(
|
|
train_dataset,
|
|
batch_size=config.collator.batch_size,
|
|
num_replicas=None,
|
|
rank=None,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
sortagrad=config.collator.sortagrad,
|
|
shuffle_method=config.collator.shuffle_method)
|
|
else:
|
|
batch_sampler = SortagradBatchSampler(
|
|
train_dataset,
|
|
shuffle=True,
|
|
batch_size=config.collator.batch_size,
|
|
drop_last=True,
|
|
sortagrad=config.collator.sortagrad,
|
|
shuffle_method=config.collator.shuffle_method)
|
|
|
|
collate_fn_train = SpeechCollator.from_config(config)
|
|
|
|
config.collator.augmentation_config = ""
|
|
collate_fn_dev = SpeechCollator.from_config(config)
|
|
self.train_loader = DataLoader(
|
|
train_dataset,
|
|
batch_sampler=batch_sampler,
|
|
collate_fn=collate_fn_train,
|
|
num_workers=config.collator.num_workers)
|
|
self.valid_loader = DataLoader(
|
|
dev_dataset,
|
|
batch_size=config.collator.batch_size,
|
|
shuffle=False,
|
|
drop_last=False,
|
|
collate_fn=collate_fn_dev)
|
|
logger.info("Setup train/valid Dataloader!")
|
|
|
|
|
|
class DeepSpeech2Tester(DeepSpeech2Trainer):
|
|
@classmethod
|
|
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
|
|
# testing config
|
|
default = CfgNode(
|
|
dict(
|
|
alpha=2.5, # Coef of LM for beam search.
|
|
beta=0.3, # Coef of WC for beam search.
|
|
cutoff_prob=1.0, # Cutoff probability for pruning.
|
|
cutoff_top_n=40, # Cutoff number for pruning.
|
|
lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm', # Filepath for language model.
|
|
decoding_method='ctc_beam_search', # Decoding method. Options: ctc_beam_search, ctc_greedy
|
|
error_rate_type='wer', # Error rate type for evaluation. Options `wer`, 'cer'
|
|
num_proc_bsearch=8, # # of CPUs for beam search.
|
|
beam_size=500, # Beam search width.
|
|
batch_size=128, # decoding batch size
|
|
))
|
|
|
|
if config is not None:
|
|
config.merge_from_other_cfg(default)
|
|
return default
|
|
|
|
def __init__(self, config, args):
|
|
super().__init__(config, args)
|
|
|
|
def ordid2token(self, texts, texts_len):
|
|
""" ord() id to chr() chr """
|
|
trans = []
|
|
for text, n in zip(texts, texts_len):
|
|
n = n.numpy().item()
|
|
ids = text[:n]
|
|
trans.append(''.join([chr(i) for i in ids]))
|
|
return trans
|
|
|
|
def compute_metrics(self,
|
|
utts,
|
|
audio,
|
|
audio_len,
|
|
texts,
|
|
texts_len,
|
|
fout=None):
|
|
cfg = self.config.decoding
|
|
errors_sum, len_refs, num_ins = 0.0, 0, 0
|
|
errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
|
|
error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer
|
|
|
|
vocab_list = self.test_loader.collate_fn.vocab_list
|
|
|
|
target_transcripts = self.ordid2token(texts, texts_len)
|
|
self.autolog.times.start()
|
|
self.autolog.times.stamp()
|
|
result_transcripts = self.model.decode(
|
|
audio,
|
|
audio_len,
|
|
vocab_list,
|
|
decoding_method=cfg.decoding_method,
|
|
lang_model_path=cfg.lang_model_path,
|
|
beam_alpha=cfg.alpha,
|
|
beam_beta=cfg.beta,
|
|
beam_size=cfg.beam_size,
|
|
cutoff_prob=cfg.cutoff_prob,
|
|
cutoff_top_n=cfg.cutoff_top_n,
|
|
num_processes=cfg.num_proc_bsearch)
|
|
self.autolog.times.stamp()
|
|
self.autolog.times.stamp()
|
|
self.autolog.times.end()
|
|
|
|
for utt, target, result in zip(utts, target_transcripts,
|
|
result_transcripts):
|
|
errors, len_ref = errors_func(target, result)
|
|
errors_sum += errors
|
|
len_refs += len_ref
|
|
num_ins += 1
|
|
if fout:
|
|
fout.write(utt + " " + result + "\n")
|
|
logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
|
|
(target, result))
|
|
logger.info("Current error rate [%s] = %f" %
|
|
(cfg.error_rate_type, error_rate_func(target, result)))
|
|
|
|
return dict(
|
|
errors_sum=errors_sum,
|
|
len_refs=len_refs,
|
|
num_ins=num_ins,
|
|
error_rate=errors_sum / len_refs,
|
|
error_rate_type=cfg.error_rate_type)
|
|
|
|
@mp_tools.rank_zero_only
|
|
@paddle.no_grad()
|
|
def test(self):
|
|
logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
|
|
self.autolog = Autolog(
|
|
batch_size=self.config.decoding.batch_size,
|
|
model_name="deepspeech2",
|
|
model_precision="fp32").getlog()
|
|
self.model.eval()
|
|
cfg = self.config
|
|
error_rate_type = None
|
|
errors_sum, len_refs, num_ins = 0.0, 0, 0
|
|
with open(self.args.result_file, 'w') as fout:
|
|
for i, batch in enumerate(self.test_loader):
|
|
utts, audio, audio_len, texts, texts_len = batch
|
|
metrics = self.compute_metrics(utts, audio, audio_len, texts,
|
|
texts_len, fout)
|
|
errors_sum += metrics['errors_sum']
|
|
len_refs += metrics['len_refs']
|
|
num_ins += metrics['num_ins']
|
|
error_rate_type = metrics['error_rate_type']
|
|
logger.info("Error rate [%s] (%d/?) = %f" %
|
|
(error_rate_type, num_ins, errors_sum / len_refs))
|
|
|
|
# logging
|
|
msg = "Test: "
|
|
msg += "epoch: {}, ".format(self.epoch)
|
|
msg += "step: {}, ".format(self.iteration)
|
|
msg += "Final error rate [%s] (%d/%d) = %f" % (
|
|
error_rate_type, num_ins, num_ins, errors_sum / len_refs)
|
|
logger.info(msg)
|
|
self.autolog.report()
|
|
|
|
def run_test(self):
|
|
self.resume_or_scratch()
|
|
try:
|
|
self.test()
|
|
except KeyboardInterrupt:
|
|
exit(-1)
|
|
|
|
def export(self):
|
|
infer_model = DeepSpeech2InferModel.from_pretrained(
|
|
self.test_loader, self.config, self.args.checkpoint_path)
|
|
infer_model.eval()
|
|
feat_dim = self.test_loader.collate_fn.feature_size
|
|
static_model = paddle.jit.to_static(
|
|
infer_model,
|
|
input_spec=[
|
|
paddle.static.InputSpec(
|
|
shape=[None, None, feat_dim],
|
|
dtype='float32'), # audio, [B,T,D]
|
|
paddle.static.InputSpec(shape=[None],
|
|
dtype='int64'), # audio_length, [B]
|
|
])
|
|
logger.info(f"Export code: {static_model.forward.code}")
|
|
paddle.jit.save(static_model, self.args.export_path)
|
|
|
|
def run_export(self):
|
|
try:
|
|
self.export()
|
|
except KeyboardInterrupt:
|
|
exit(-1)
|
|
|
|
def setup(self):
|
|
"""Setup the experiment.
|
|
"""
|
|
paddle.set_device(self.args.device)
|
|
|
|
self.setup_output_dir()
|
|
self.setup_checkpointer()
|
|
|
|
self.setup_dataloader()
|
|
self.setup_model()
|
|
|
|
self.iteration = 0
|
|
self.epoch = 0
|
|
|
|
def setup_model(self):
|
|
config = self.config
|
|
model = DeepSpeech2Model(
|
|
feat_size=self.test_loader.collate_fn.feature_size,
|
|
dict_size=self.test_loader.collate_fn.vocab_size,
|
|
num_conv_layers=config.model.num_conv_layers,
|
|
num_rnn_layers=config.model.num_rnn_layers,
|
|
rnn_size=config.model.rnn_layer_size,
|
|
use_gru=config.model.use_gru,
|
|
share_rnn_weights=config.model.share_rnn_weights)
|
|
self.model = model
|
|
logger.info("Setup model!")
|
|
|
|
def setup_dataloader(self):
|
|
config = self.config.clone()
|
|
config.defrost()
|
|
# return raw text
|
|
|
|
config.data.manifest = config.data.test_manifest
|
|
# filter test examples, will cause less examples, but no mismatch with training
|
|
# and can use large batch size , save training time, so filter test egs now.
|
|
# config.data.min_input_len = 0.0 # second
|
|
# config.data.max_input_len = float('inf') # second
|
|
# config.data.min_output_len = 0.0 # tokens
|
|
# config.data.max_output_len = float('inf') # tokens
|
|
# config.data.min_output_input_ratio = 0.00
|
|
# config.data.max_output_input_ratio = float('inf')
|
|
test_dataset = ManifestDataset.from_config(config)
|
|
|
|
config.collator.keep_transcription_text = True
|
|
config.collator.augmentation_config = ""
|
|
# return text ord id
|
|
self.test_loader = DataLoader(
|
|
test_dataset,
|
|
batch_size=config.decoding.batch_size,
|
|
shuffle=False,
|
|
drop_last=False,
|
|
collate_fn=SpeechCollator.from_config(config))
|
|
logger.info("Setup test Dataloader!")
|
|
|
|
def setup_output_dir(self):
|
|
"""Create a directory used for output.
|
|
"""
|
|
# output dir
|
|
if self.args.output:
|
|
output_dir = Path(self.args.output).expanduser()
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
else:
|
|
output_dir = Path(
|
|
self.args.checkpoint_path).expanduser().parent.parent
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.output_dir = output_dir
|