You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
4.6 KiB
136 lines
4.6 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import soundfile as sf
|
|
from paddle import inference
|
|
|
|
from paddlespeech.t2s.frontend.zh_frontend import Frontend
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description="Paddle Infernce with speedyspeech & parallel wavegan.")
|
|
parser.add_argument(
|
|
"--inference-dir", type=str, help="dir to save inference models")
|
|
parser.add_argument(
|
|
"--text",
|
|
type=str,
|
|
help="text to synthesize, a 'utt_id sentence' pair per line")
|
|
parser.add_argument("--output-dir", type=str, help="output dir")
|
|
parser.add_argument(
|
|
"--enable-auto-log", action="store_true", help="use auto log")
|
|
parser.add_argument(
|
|
"--phones-dict",
|
|
type=str,
|
|
default="phones.txt",
|
|
help="phone vocabulary file.")
|
|
|
|
args, _ = parser.parse_known_args()
|
|
|
|
frontend = Frontend(phone_vocab_path=args.phones_dict)
|
|
print("frontend done!")
|
|
|
|
fastspeech2_config = inference.Config(
|
|
str(Path(args.inference_dir) / "fastspeech2.pdmodel"),
|
|
str(Path(args.inference_dir) / "fastspeech2.pdiparams"))
|
|
fastspeech2_config.enable_use_gpu(50, 0)
|
|
# This line must be commented, if not, it will OOM
|
|
# fastspeech2_config.enable_memory_optim()
|
|
fastspeech2_predictor = inference.create_predictor(fastspeech2_config)
|
|
|
|
pwg_config = inference.Config(
|
|
str(Path(args.inference_dir) / "pwg.pdmodel"),
|
|
str(Path(args.inference_dir) / "pwg.pdiparams"))
|
|
pwg_config.enable_use_gpu(100, 0)
|
|
pwg_config.enable_memory_optim()
|
|
pwg_predictor = inference.create_predictor(pwg_config)
|
|
|
|
if args.enable_auto_log:
|
|
import auto_log
|
|
os.makedirs("output", exist_ok=True)
|
|
pid = os.getpid()
|
|
logger = auto_log.AutoLogger(
|
|
model_name="fastspeech2",
|
|
model_precision='float32',
|
|
batch_size=1,
|
|
data_shape="dynamic",
|
|
save_path="./output/auto_log.log",
|
|
inference_config=fastspeech2_config,
|
|
pids=pid,
|
|
process_name=None,
|
|
gpu_ids=0,
|
|
time_keys=['preprocess_time', 'inference_time', 'postprocess_time'],
|
|
warmup=0)
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
sentences = []
|
|
|
|
with open(args.text, 'rt') as f:
|
|
for line in f:
|
|
items = line.strip().split()
|
|
utt_id = items[0]
|
|
sentence = "".join(items[1:])
|
|
sentences.append((utt_id, sentence))
|
|
|
|
for utt_id, sentence in sentences:
|
|
if args.enable_auto_log:
|
|
logger.times.start()
|
|
input_ids = frontend.get_input_ids(sentence, merge_sentences=True)
|
|
phone_ids = input_ids["phone_ids"]
|
|
phones = phone_ids[0].numpy()
|
|
|
|
if args.enable_auto_log:
|
|
logger.times.stamp()
|
|
|
|
input_names = fastspeech2_predictor.get_input_names()
|
|
phones_handle = fastspeech2_predictor.get_input_handle(input_names[0])
|
|
|
|
phones_handle.reshape(phones.shape)
|
|
phones_handle.copy_from_cpu(phones)
|
|
|
|
fastspeech2_predictor.run()
|
|
output_names = fastspeech2_predictor.get_output_names()
|
|
output_handle = fastspeech2_predictor.get_output_handle(output_names[0])
|
|
output_data = output_handle.copy_to_cpu()
|
|
|
|
input_names = pwg_predictor.get_input_names()
|
|
mel_handle = pwg_predictor.get_input_handle(input_names[0])
|
|
mel_handle.reshape(output_data.shape)
|
|
mel_handle.copy_from_cpu(output_data)
|
|
|
|
pwg_predictor.run()
|
|
output_names = pwg_predictor.get_output_names()
|
|
output_handle = pwg_predictor.get_output_handle(output_names[0])
|
|
wav = output_data = output_handle.copy_to_cpu()
|
|
|
|
if args.enable_auto_log:
|
|
logger.times.stamp()
|
|
|
|
sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=24000)
|
|
|
|
if args.enable_auto_log:
|
|
logger.times.end(stamp=True)
|
|
print(f"{utt_id} done!")
|
|
|
|
if args.enable_auto_log:
|
|
logger.report()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|