You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/modules/mask.py

276 lines
10 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
__all__ = [
"make_xs_mask", "make_pad_mask", "make_non_pad_mask", "subsequent_mask",
"subsequent_chunk_mask", "add_optional_chunk_mask", "mask_finished_scores",
"mask_finished_preds"
]
def make_xs_mask(xs: paddle.Tensor, pad_value=0.0) -> paddle.Tensor:
"""Maks mask tensor containing indices of non-padded part.
Args:
xs (paddle.Tensor): (B, T, D), zeros for pad.
Returns:
paddle.Tensor: Mask Tensor indices of non-padded part. (B, T)
"""
pad_frame = paddle.full([1, 1, xs.shape[-1]], pad_value, dtype=xs.dtype)
mask = xs != pad_frame
mask = mask.all(axis=-1)
return mask
def make_pad_mask(lengths: paddle.Tensor) -> paddle.Tensor:
"""Make mask tensor containing indices of padded part.
See description of make_non_pad_mask.
Args:
lengths (paddle.Tensor): Batch of lengths (B,).
Returns:
paddle.Tensor: Mask tensor containing indices of padded part.
(B, T)
Examples:
>>> lengths = [5, 3, 2]
>>> make_pad_mask(lengths)
masks = [[0, 0, 0, 0 ,0],
[0, 0, 0, 1, 1],
[0, 0, 1, 1, 1]]
"""
# (TODO: Hui Zhang): jit not support Tenosr.dim() and Tensor.ndim
# assert lengths.dim() == 1
batch_size = int(lengths.shape[0])
max_len = int(lengths.max())
seq_range = paddle.arange(0, max_len, dtype=paddle.int64)
seq_range_expand = seq_range.unsqueeze(0).expand([batch_size, max_len])
seq_length_expand = lengths.unsqueeze(-1)
mask = seq_range_expand >= seq_length_expand
return mask
def make_non_pad_mask(lengths: paddle.Tensor) -> paddle.Tensor:
"""Make mask tensor containing indices of non-padded part.
The sequences in a batch may have different lengths. To enable
batch computing, padding is need to make all sequence in same
size. To avoid the padding part pass value to context dependent
block such as attention or convolution , this padding part is
masked.
This pad_mask is used in both encoder and decoder.
1 for non-padded part and 0 for padded part.
Args:
lengths (paddle.Tensor): Batch of lengths (B,).
Returns:
paddle.Tensor: mask tensor containing indices of padded part.
(B, T)
Examples:
>>> lengths = [5, 3, 2]
>>> make_non_pad_mask(lengths)
masks = [[1, 1, 1, 1 ,1],
[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]]
"""
#return ~make_pad_mask(lengths)
return make_pad_mask(lengths).logical_not()
def subsequent_mask(size: int) -> paddle.Tensor:
"""Create mask for subsequent steps (size, size).
This mask is used only in decoder which works in an auto-regressive mode.
This means the current step could only do attention with its left steps.
In encoder, fully attention is used when streaming is not necessary and
the sequence is not long. In this case, no attention mask is needed.
When streaming is need, chunk-based attention is used in encoder. See
subsequent_chunk_mask for the chunk-based attention mask.
Args:
size (int): size of mask
Returns:
paddle.Tensor: mask, [size, size]
Examples:
>>> subsequent_mask(3)
[[1, 0, 0],
[1, 1, 0],
[1, 1, 1]]
"""
ret = paddle.ones([size, size], dtype=paddle.bool)
#TODO(Hui Zhang): tril not support bool
#return paddle.tril(ret)
ret = ret.astype(paddle.float)
ret = paddle.tril(ret)
ret = ret.astype(paddle.bool)
return ret
def subsequent_chunk_mask(
size: int,
chunk_size: int,
num_left_chunks: int=-1, ) -> paddle.Tensor:
"""Create mask for subsequent steps (size, size) with chunk size,
this is for streaming encoder
Args:
size (int): size of mask
chunk_size (int): size of chunk
num_left_chunks (int): number of left chunks
<0: use full chunk
>=0: use num_left_chunks
Returns:
paddle.Tensor: mask, [size, size]
Examples:
>>> subsequent_chunk_mask(4, 2)
[[1, 1, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1]]
"""
ret = paddle.zeros([size, size], dtype=paddle.bool)
for i in range(size):
if num_left_chunks < 0:
start = 0
else:
start = max(0, (i // chunk_size - num_left_chunks) * chunk_size)
ending = min(size, (i // chunk_size + 1) * chunk_size)
ret[i, start:ending] = True
return ret
def add_optional_chunk_mask(xs: paddle.Tensor,
masks: paddle.Tensor,
use_dynamic_chunk: bool,
use_dynamic_left_chunk: bool,
decoding_chunk_size: int,
static_chunk_size: int,
num_decoding_left_chunks: int):
""" Apply optional mask for encoder.
Args:
xs (paddle.Tensor): padded input, (B, L, D), L for max length
mask (paddle.Tensor): mask for xs, (B, 1, L)
use_dynamic_chunk (bool): whether to use dynamic chunk or not
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
training.
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
static_chunk_size (int): chunk size for static chunk training/decoding
if it's greater than 0, if use_dynamic_chunk is true,
this parameter will be ignored
num_decoding_left_chunks (int): number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
paddle.Tensor: chunk mask of the input xs.
"""
# Whether to use chunk mask or not
if use_dynamic_chunk:
max_len = xs.shape[1]
if decoding_chunk_size < 0:
chunk_size = max_len
num_left_chunks = -1
elif decoding_chunk_size > 0:
chunk_size = decoding_chunk_size
num_left_chunks = num_decoding_left_chunks
else:
# chunk size is either [1, 25] or full context(max_len).
# Since we use 4 times subsampling and allow up to 1s(100 frames)
# delay, the maximum frame is 100 / 4 = 25.
chunk_size = int(paddle.randint(1, max_len, (1, )))
num_left_chunks = -1
if chunk_size > max_len // 2:
chunk_size = max_len
else:
chunk_size = chunk_size % 25 + 1
if use_dynamic_left_chunk:
max_left_chunks = (max_len - 1) // chunk_size
num_left_chunks = int(
paddle.randint(0, max_left_chunks, (1, )))
chunk_masks = subsequent_chunk_mask(xs.shape[1], chunk_size,
num_left_chunks) # (L, L)
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
# chunk_masks = masks & chunk_masks # (B, L, L)
chunk_masks = masks.logical_and(chunk_masks) # (B, L, L)
elif static_chunk_size > 0:
num_left_chunks = num_decoding_left_chunks
chunk_masks = subsequent_chunk_mask(xs.shape[1], static_chunk_size,
num_left_chunks) # (L, L)
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
# chunk_masks = masks & chunk_masks # (B, L, L)
chunk_masks = masks.logical_and(chunk_masks) # (B, L, L)
else:
chunk_masks = masks
return chunk_masks
def mask_finished_scores(score: paddle.Tensor,
flag: paddle.Tensor) -> paddle.Tensor:
"""
If a sequence is finished, we only allow one alive branch. This function
aims to give one branch a zero score and the rest -inf score.
Args:
score (paddle.Tensor): A real value array with shape
(batch_size * beam_size, beam_size).
flag (paddle.Tensor): A bool array with shape
(batch_size * beam_size, 1).
Returns:
paddle.Tensor: (batch_size * beam_size, beam_size).
Examples:
flag: tensor([[ True],
[False]])
score: tensor([[-0.3666, -0.6664, 0.6019],
[-1.1490, -0.2948, 0.7460]])
unfinished: tensor([[False, True, True],
[False, False, False]])
finished: tensor([[ True, False, False],
[False, False, False]])
return: tensor([[ 0.0000, -inf, -inf],
[-1.1490, -0.2948, 0.7460]])
"""
beam_size = score.shape[-1]
zero_mask = paddle.zeros_like(flag, dtype=paddle.bool)
if beam_size > 1:
unfinished = paddle.concat(
(zero_mask, flag.tile([1, beam_size - 1])), axis=1)
finished = paddle.concat(
(flag, zero_mask.tile([1, beam_size - 1])), axis=1)
else:
unfinished = zero_mask
finished = flag
# infs = paddle.ones_like(score) * -float('inf')
# score = paddle.where(unfinished, infs, score)
# score = paddle.where(finished, paddle.zeros_like(score), score)
score.masked_fill_(unfinished, -float('inf'))
score.masked_fill_(finished, 0)
return score
def mask_finished_preds(pred: paddle.Tensor, flag: paddle.Tensor,
eos: int) -> paddle.Tensor:
"""
If a sequence is finished, all of its branch should be <eos>
Args:
pred (paddle.Tensor): A int array with shape
(batch_size * beam_size, beam_size).
flag (paddle.Tensor): A bool array with shape
(batch_size * beam_size, 1).
Returns:
paddle.Tensor: (batch_size * beam_size).
"""
beam_size = pred.shape[-1]
finished = flag.repeat(1, beam_size)
return pred.masked_fill_(finished, eos)