You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/demos/speaker_verification
xiongxinlei c78b79e838
add vector server, test=doc
3 years ago
..
README.md add vector server, test=doc 3 years ago
README_cn.md add vector server, test=doc 3 years ago
run.sh add speaker verification method, test=doc 3 years ago

README.md

(简体中文|English)

Speech Verification

Introduction

Speaker Verification, refers to the problem of getting a speaker embedding from an audio.

This demo is an implementation to extract speaker embedding from a specific audio file. It can be done by a single command or a few lines in python using PaddleSpeech.

Usage

1. Installation

see installation.

You can choose one way from easy, meduim and hard to install paddlespeech.

2. Prepare Input File

The input of this cli demo should be a WAV file(.wav), and the sample rate must be the same as the model.

Here are sample files for this demo that can be downloaded:

wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav

3. Usage

  • Command Line(Recommended)

    paddlespeech vector --task spk --input 85236145389.wav
    
    echo -e "demo1 85236145389.wav" > vec.job
    paddlespeech vector --task spk --input vec.job
    
    echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk
    
    paddlespeech vector --task score --input "./85236145389.wav ./123456789.wav"
    
    echo -e "demo4 85236145389.wav 85236145389.wav \n demo5 85236145389.wav 123456789.wav" > vec.job
    paddlespeech vector --task score --input vec.job
    

    Usage:

    paddlespeech vector --help
    

    Arguments:

    • input(required): Audio file to recognize.
    • task (required): Specify vector task. Default spk
    • model: Model type of vector task. Default: ecapatdnn_voxceleb12.
    • sample_rate: Sample rate of the model. Default: 16000.
    • config: Config of vector task. Use pretrained model when it is None. Default: None.
    • ckpt_path: Model checkpoint. Use pretrained model when it is None. Default: None.
    • device: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.

    Output:

      demo [  1.4217498    5.626253    -5.342073     1.1773866    3.308055
      1.756596     5.167894    10.80636     -3.8226728   -5.6141334
      2.623845    -0.8072968    1.9635103   -7.3128724    0.01103897
      -9.723131     0.6619743   -6.976803    10.213478     7.494748
      2.9105635    3.8949256    3.7999806    7.1061673   16.905321
      -7.1493764    8.733103     3.4230042   -4.831653   -11.403367
      11.232214     7.1274667   -4.2828417    2.452362    -5.130748
      -18.177666    -2.6116815  -11.000337    -6.7314315    1.6564683
      0.7618269    1.1253023   -2.083836     4.725744    -8.782597
      -3.539873     3.814236     5.1420674    2.162061     4.096431
      -6.4162116   12.747448     1.9429878  -15.152943     6.417416
      16.097002    -9.716668    -1.9920526   -3.3649497   -1.871939
      11.567354     3.69788     11.258265     7.442363     9.183411
      4.5281515   -1.2417862    4.3959084    6.6727695    5.8898783
      7.627124    -0.66919386 -11.889693    -9.208865    -7.4274073
      -3.7776625    6.917234    -9.848748    -2.0944717   -5.135116
      0.49563864   9.317534    -5.9141874   -1.8098574   -0.11738578
      -7.169265    -1.0578263   -5.7216787   -5.1173844   16.137651
      -4.473626     7.6624317   -0.55381083   9.631587    -6.4704556
      -8.548508     4.3716145   -0.79702514   4.478997    -2.9758704
      3.272176     2.8382776    5.134597    -9.190781    -0.5657382
      -4.8745747    2.3165567   -5.984303    -2.1798875    0.35541576
      -0.31784213   9.493548     2.1144536    4.358092   -12.089823
      8.451689    -7.925461     4.6242585    4.4289427   18.692003
      -2.6204622   -5.149185    -0.35821092   8.488551     4.981496
      -9.32683     -2.2544234    6.6417594    1.2119585   10.977129
      16.555033     3.3238444    9.551863    -1.6676947   -0.79539716
      -8.605674    -0.47356385   2.6741948   -5.359179    -2.6673796
      0.66607     15.443222     4.740594    -3.4725387   11.592567
      -2.054497     1.7361217   -8.265324    -9.30447      5.4068313
      -1.5180256   -7.746615    -6.089606     0.07112726  -0.34904733
      -8.649895    -9.998958    -2.564841    -0.53999114   2.601808
      -0.31927416  -1.8815292   -2.07215     -3.4105783   -8.2998085
      1.483641   -15.365992    -8.288208     3.8847756   -3.4876456
      7.3629923    0.4657332    3.132599    12.438889    -1.8337058
      4.532936     2.7264361   10.145339    -6.521951     2.897153
      -3.3925855    5.079156     7.759716     4.677565     5.8457737
      2.402413     7.7071047    3.9711342   -6.390043     6.1268735
      -3.7760346  -11.118123  ]
    
  • Python API

    import paddle
    from paddlespeech.cli import VectorExecutor
    
    vector_executor = VectorExecutor()
    audio_emb = vector_executor(
        model='ecapatdnn_voxceleb12',
        sample_rate=16000,
        config=None,  # Set `config` and `ckpt_path` to None to use pretrained model.
        ckpt_path=None,
        audio_file='./85236145389.wav',
        device=paddle.get_device())
    print('Audio embedding Result: \n{}'.format(audio_emb))
    
    test_emb = vector_executor(
        model='ecapatdnn_voxceleb12',
        sample_rate=16000,
        config=None,  # Set `config` and `ckpt_path` to None to use pretrained model.
        ckpt_path=None,
        audio_file='./123456789.wav',
        device=paddle.get_device())
    print('Test embedding Result: \n{}'.format(test_emb))
    
    # score range [0, 1]
    score = vector_executor.get_embeddings_score(audio_emb, test_emb)
    print(f"Eembeddings Score: {score}")
    

    Output

    # Vector Result:
     Audio embedding Result:
      [  1.4217498    5.626253    -5.342073     1.1773866    3.308055
      1.756596     5.167894    10.80636     -3.8226728   -5.6141334
      2.623845    -0.8072968    1.9635103   -7.3128724    0.01103897
      -9.723131     0.6619743   -6.976803    10.213478     7.494748
      2.9105635    3.8949256    3.7999806    7.1061673   16.905321
      -7.1493764    8.733103     3.4230042   -4.831653   -11.403367
      11.232214     7.1274667   -4.2828417    2.452362    -5.130748
      -18.177666    -2.6116815  -11.000337    -6.7314315    1.6564683
      0.7618269    1.1253023   -2.083836     4.725744    -8.782597
      -3.539873     3.814236     5.1420674    2.162061     4.096431
      -6.4162116   12.747448     1.9429878  -15.152943     6.417416
      16.097002    -9.716668    -1.9920526   -3.3649497   -1.871939
      11.567354     3.69788     11.258265     7.442363     9.183411
      4.5281515   -1.2417862    4.3959084    6.6727695    5.8898783
      7.627124    -0.66919386 -11.889693    -9.208865    -7.4274073
      -3.7776625    6.917234    -9.848748    -2.0944717   -5.135116
      0.49563864   9.317534    -5.9141874   -1.8098574   -0.11738578
      -7.169265    -1.0578263   -5.7216787   -5.1173844   16.137651
      -4.473626     7.6624317   -0.55381083   9.631587    -6.4704556
      -8.548508     4.3716145   -0.79702514   4.478997    -2.9758704
      3.272176     2.8382776    5.134597    -9.190781    -0.5657382
      -4.8745747    2.3165567   -5.984303    -2.1798875    0.35541576
      -0.31784213   9.493548     2.1144536    4.358092   -12.089823
      8.451689    -7.925461     4.6242585    4.4289427   18.692003
      -2.6204622   -5.149185    -0.35821092   8.488551     4.981496
      -9.32683     -2.2544234    6.6417594    1.2119585   10.977129
      16.555033     3.3238444    9.551863    -1.6676947   -0.79539716
      -8.605674    -0.47356385   2.6741948   -5.359179    -2.6673796
      0.66607     15.443222     4.740594    -3.4725387   11.592567
      -2.054497     1.7361217   -8.265324    -9.30447      5.4068313
      -1.5180256   -7.746615    -6.089606     0.07112726  -0.34904733
      -8.649895    -9.998958    -2.564841    -0.53999114   2.601808
      -0.31927416  -1.8815292   -2.07215     -3.4105783   -8.2998085
      1.483641   -15.365992    -8.288208     3.8847756   -3.4876456
      7.3629923    0.4657332    3.132599    12.438889    -1.8337058
      4.532936     2.7264361   10.145339    -6.521951     2.897153
      -3.3925855    5.079156     7.759716     4.677565     5.8457737
      2.402413     7.7071047    3.9711342   -6.390043     6.1268735
      -3.7760346  -11.118123  ]
      # get the test embedding
      Test embedding Result:
      [ -1.902964     2.0690894   -8.034194     3.5472693    0.18089125
        6.9085927    1.4097427   -1.9487704  -10.021278    -0.20755845
        -8.04332      4.344489     2.3200977  -14.306299     5.184692
      -11.55602     -3.8497238    0.6444722    1.2833948    2.6766639
        0.5878921    0.7946299    1.7207596    2.5791872   14.998469
        -1.3385371   15.031221    -0.8006958    1.99287     -9.52007
        2.435466     4.003221    -4.33817     -4.898601    -5.304714
      -18.033886    10.790787   -12.784645    -5.641755     2.9761686
      -10.566622     1.4839455    6.152458    -5.7195854    2.8603241
        6.112133     8.489869     5.5958056    1.2836679   -1.2293907
        0.89927405   7.0288725   -2.854029    -0.9782962    5.8255906
        14.905906    -5.025907     0.7866458   -4.2444224  -16.354029
        10.521315     0.9604709   -3.3257897    7.144871   -13.592733
        -8.568869    -1.7953678    0.26313916  10.916714    -6.9374123
        1.857403    -6.2746415    2.8154466   -7.2338667   -2.293357
        -0.05452765   5.4287076    5.0849075   -6.690375    -1.6183422
        3.654291     0.94352573  -9.200294    -5.4749465   -3.5235846
        1.3420814    4.240421    -2.772944    -2.8451524   16.311104
        4.2969875   -1.762936   -12.5758915    8.595198    -0.8835239
        -1.5708797    1.568961     1.1413603    3.5032008   -0.45251232
        -6.786333    16.89443      5.3366146   -8.789056     0.6355629
        3.2579517   -3.328322     7.5969577    0.66025066  -6.550468
        -9.148656     2.020372    -0.4615173    1.1965656   -3.8764873
        11.6562195   -6.0750933   12.182899     3.2218833    0.81969476
        5.570001    -3.8459578   -7.205299     7.9262037   -7.6611166
        -5.249467    -2.2671914    7.2658715  -13.298164     4.821147
        -2.7263982   11.691089    -3.8918593   -2.838112    -1.0336838
        -3.8034165    2.8536487   -5.60398     -1.1972581    1.3455094
        -3.4903061    2.2408795    5.5010734   -3.970756    11.99696
        -7.8858757    0.43160373  -5.5059714    4.3426995   16.322706
        11.635366     0.72157705  -9.245714    -3.91465     -4.449838
        -1.5716927    7.713747    -2.2430465   -6.198303   -13.481864
        2.8156567   -5.7812386    5.1456156    2.7289324  -14.505571
        13.270688     3.448231    -7.0659585    4.5886116   -4.466099
        -0.296428   -11.463529    -2.6076477   14.110243    -6.9725137
        -1.9962958    2.7119343   19.391657     0.01961198  14.607133
        -1.6695905   -4.391516     1.3131028   -6.670972    -5.888604
        12.0612335    5.9285784    3.3715196    1.492534    10.723728
        -0.95514804 -12.085431  ]
      # get the score between enroll and test
      Eembeddings Score: 0.4292638301849365
    

4.Pretrained Models

Here is a list of pretrained models released by PaddleSpeech that can be used by command and python API:

Model Sample Rate
ecapatdnn_voxceleb12 16k