You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
6.1 KiB
187 lines
6.1 KiB
#!/usr/bin/env python3
|
|
import argparse
|
|
import logging
|
|
|
|
import kaldiio
|
|
import numpy as np
|
|
|
|
from deepspeech.transform.transformation import Transformation
|
|
from deepspeech.utils.cli_readers import file_reader_helper
|
|
from deepspeech.utils.cli_utils import get_commandline_args
|
|
from deepspeech.utils.cli_utils import is_scipy_wav_style
|
|
from deepspeech.utils.cli_writers import file_writer_helper
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
description="Compute cepstral mean and "
|
|
"variance normalization statistics"
|
|
"If wspecifier provided: per-utterance by default, "
|
|
"or per-speaker if"
|
|
"spk2utt option provided; if wxfilename: global",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter, )
|
|
parser.add_argument(
|
|
"--spk2utt",
|
|
type=str,
|
|
help="A text file of speaker to utterance-list map. "
|
|
"(Don't give rspecifier format, such as "
|
|
'"ark:utt2spk")', )
|
|
parser.add_argument(
|
|
"--verbose", "-V", default=0, type=int, help="Verbose option")
|
|
parser.add_argument(
|
|
"--in-filetype",
|
|
type=str,
|
|
default="mat",
|
|
choices=["mat", "hdf5", "sound.hdf5", "sound"],
|
|
help="Specify the file format for the rspecifier. "
|
|
'"mat" is the matrix format in kaldi', )
|
|
parser.add_argument(
|
|
"--out-filetype",
|
|
type=str,
|
|
default="mat",
|
|
choices=["mat", "hdf5", "npy"],
|
|
help="Specify the file format for the wspecifier. "
|
|
'"mat" is the matrix format in kaldi', )
|
|
parser.add_argument(
|
|
"--preprocess-conf",
|
|
type=str,
|
|
default=None,
|
|
help="The configuration file for the pre-processing", )
|
|
parser.add_argument(
|
|
"rspecifier",
|
|
type=str,
|
|
help="Read specifier for feats. e.g. ark:some.ark")
|
|
parser.add_argument(
|
|
"wspecifier_or_wxfilename",
|
|
type=str,
|
|
help="Write specifier. e.g. ark:some.ark")
|
|
return parser
|
|
|
|
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
|
|
logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
|
|
if args.verbose > 0:
|
|
logging.basicConfig(level=logging.INFO, format=logfmt)
|
|
else:
|
|
logging.basicConfig(level=logging.WARN, format=logfmt)
|
|
logging.info(get_commandline_args())
|
|
|
|
is_wspecifier = ":" in args.wspecifier_or_wxfilename
|
|
|
|
if is_wspecifier:
|
|
if args.spk2utt is not None:
|
|
logging.info("Performing as speaker CMVN mode")
|
|
utt2spk_dict = {}
|
|
with open(args.spk2utt) as f:
|
|
for line in f:
|
|
spk, utts = line.rstrip().split(None, 1)
|
|
for utt in utts.split():
|
|
utt2spk_dict[utt] = spk
|
|
|
|
def utt2spk(x):
|
|
return utt2spk_dict[x]
|
|
|
|
else:
|
|
logging.info("Performing as utterance CMVN mode")
|
|
|
|
def utt2spk(x):
|
|
return x
|
|
|
|
if args.out_filetype == "npy":
|
|
logging.warning("--out-filetype npy is allowed only for "
|
|
"Global CMVN mode, changing to hdf5")
|
|
args.out_filetype = "hdf5"
|
|
|
|
else:
|
|
logging.info("Performing as global CMVN mode")
|
|
if args.spk2utt is not None:
|
|
logging.warning("spk2utt is not used for global CMVN mode")
|
|
|
|
def utt2spk(x):
|
|
return None
|
|
|
|
if args.out_filetype == "hdf5":
|
|
logging.warning("--out-filetype hdf5 is not allowed for "
|
|
"Global CMVN mode, changing to npy")
|
|
args.out_filetype = "npy"
|
|
|
|
if args.preprocess_conf is not None:
|
|
preprocessing = Transformation(args.preprocess_conf)
|
|
logging.info("Apply preprocessing: {}".format(preprocessing))
|
|
else:
|
|
preprocessing = None
|
|
|
|
# Calculate stats for each speaker
|
|
counts = {}
|
|
sum_feats = {}
|
|
square_sum_feats = {}
|
|
|
|
idx = 0
|
|
for idx, (utt, matrix) in enumerate(
|
|
file_reader_helper(args.rspecifier, args.in_filetype), 1):
|
|
if is_scipy_wav_style(matrix):
|
|
# If data is sound file, then got as Tuple[int, ndarray]
|
|
rate, matrix = matrix
|
|
if preprocessing is not None:
|
|
matrix = preprocessing(matrix, uttid_list=utt)
|
|
|
|
spk = utt2spk(utt)
|
|
|
|
# Init at the first seen of the spk
|
|
if spk not in counts:
|
|
counts[spk] = 0
|
|
feat_shape = matrix.shape[1:]
|
|
# Accumulate in double precision
|
|
sum_feats[spk] = np.zeros(feat_shape, dtype=np.float64)
|
|
square_sum_feats[spk] = np.zeros(feat_shape, dtype=np.float64)
|
|
|
|
counts[spk] += matrix.shape[0]
|
|
sum_feats[spk] += matrix.sum(axis=0)
|
|
square_sum_feats[spk] += (matrix**2).sum(axis=0)
|
|
logging.info("Processed {} utterances".format(idx))
|
|
assert idx > 0, idx
|
|
|
|
cmvn_stats = {}
|
|
for spk in counts:
|
|
feat_shape = sum_feats[spk].shape
|
|
cmvn_shape = (2, feat_shape[0] + 1) + feat_shape[1:]
|
|
_cmvn_stats = np.empty(cmvn_shape, dtype=np.float64)
|
|
_cmvn_stats[0, :-1] = sum_feats[spk]
|
|
_cmvn_stats[1, :-1] = square_sum_feats[spk]
|
|
|
|
_cmvn_stats[0, -1] = counts[spk]
|
|
_cmvn_stats[1, -1] = 0.0
|
|
|
|
# You can get the mean and std as following,
|
|
# >>> N = _cmvn_stats[0, -1]
|
|
# >>> mean = _cmvn_stats[0, :-1] / N
|
|
# >>> std = np.sqrt(_cmvn_stats[1, :-1] / N - mean ** 2)
|
|
|
|
cmvn_stats[spk] = _cmvn_stats
|
|
|
|
# Per utterance or speaker CMVN
|
|
if is_wspecifier:
|
|
with file_writer_helper(
|
|
args.wspecifier_or_wxfilename,
|
|
filetype=args.out_filetype) as writer:
|
|
for spk, mat in cmvn_stats.items():
|
|
writer[spk] = mat
|
|
|
|
# Global CMVN
|
|
else:
|
|
matrix = cmvn_stats[None]
|
|
if args.out_filetype == "npy":
|
|
np.save(args.wspecifier_or_wxfilename, matrix)
|
|
elif args.out_filetype == "mat":
|
|
# Kaldi supports only matrix or vector
|
|
kaldiio.save_mat(args.wspecifier_or_wxfilename, matrix)
|
|
else:
|
|
raise RuntimeError(
|
|
"Not supporting: --out-filetype {}".format(args.out_filetype))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|