You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/csmsc/speedyspeech/normalize.py

160 lines
5.2 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Normalize feature files and dump them."""
import argparse
import logging
from operator import itemgetter
from pathlib import Path
import jsonlines
import numpy as np
from parakeet.datasets.data_table import DataTable
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
)
parser.add_argument(
"--metadata",
type=str,
required=True,
help="directory including feature files to be normalized. "
"you need to specify either *-scp or rootdir.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump normalized feature files.")
parser.add_argument(
"--stats", type=str, required=True, help="statistics file.")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
parser.add_argument(
"--tones-dict", type=str, default=None, help="tone vocabulary file.")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
def str2bool(str):
return True if str.lower() == 'true' else False
parser.add_argument(
"--use-relative-path",
type=str2bool,
default=False,
help="whether use relative path in metadata")
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
logging.warning('Skip DEBUG/INFO messages')
dumpdir = Path(args.dumpdir).expanduser()
# use absolute path
dumpdir = dumpdir.resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
# get dataset
with jsonlines.open(args.metadata, 'r') as reader:
metadata = list(reader)
if args.use_relative_path:
# if use_relative_path in preprocess, covert it to absolute path here
metadata_dir = Path(args.metadata).parent
for item in metadata:
item["feats"] = str(metadata_dir / item["feats"])
dataset = DataTable(
metadata, converters={
'feats': np.load,
})
logging.info(f"The number of files = {len(dataset)}.")
# restore scaler
scaler = StandardScaler()
scaler.mean_ = np.load(args.stats)[0]
scaler.scale_ = np.load(args.stats)[1]
# from version 0.23.0, this information is needed
scaler.n_features_in_ = scaler.mean_.shape[0]
vocab_phones = {}
with open(args.phones_dict, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
vocab_phones[phn] = int(id)
vocab_tones = {}
with open(args.tones_dict, 'rt') as f:
tone_id = [line.strip().split() for line in f.readlines()]
for tone, id in tone_id:
vocab_tones[tone] = int(id)
# process each file
output_metadata = []
for item in tqdm(dataset):
utt_id = item['utt_id']
mel = item['feats']
# normalize
mel = scaler.transform(mel)
# save
mel_path = dumpdir / f"{utt_id}_feats.npy"
np.save(mel_path, mel.astype(np.float32), allow_pickle=False)
phone_ids = [vocab_phones[p] for p in item['phones']]
tone_ids = [vocab_tones[p] for p in item['tones']]
if args.use_relative_path:
# convert absolute path to relative path:
mel_path = mel_path.relative_to(dumpdir)
output_metadata.append({
'utt_id': utt_id,
'phones': phone_ids,
'tones': tone_ids,
'num_phones': item['num_phones'],
'num_frames': item['num_frames'],
'durations': item['durations'],
'feats': str(mel_path),
})
output_metadata.sort(key=itemgetter('utt_id'))
output_metadata_path = Path(args.dumpdir) / "metadata.jsonl"
with jsonlines.open(output_metadata_path, 'w') as writer:
for item in output_metadata:
writer.write(item)
logging.info(f"metadata dumped into {output_metadata_path}")
if __name__ == "__main__":
main()