You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
9.5 KiB
253 lines
9.5 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import io
|
|
import os
|
|
import time
|
|
from typing import Optional
|
|
|
|
import paddle
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.cli.asr.infer import ASRExecutor
|
|
from paddlespeech.cli.log import logger
|
|
from paddlespeech.cli.utils import MODEL_HOME
|
|
from paddlespeech.resource import CommonTaskResource
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
from paddlespeech.s2t.modules.ctc import CTCDecoder
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
from paddlespeech.server.utils.paddle_predictor import init_predictor
|
|
from paddlespeech.server.utils.paddle_predictor import run_model
|
|
|
|
__all__ = ['ASREngine', 'PaddleASRConnectionHandler']
|
|
|
|
|
|
class ASRServerExecutor(ASRExecutor):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.task_resource = CommonTaskResource(
|
|
task='asr', model_format='static')
|
|
|
|
def _init_from_path(self,
|
|
model_type: str='wenetspeech',
|
|
am_model: Optional[os.PathLike]=None,
|
|
am_params: Optional[os.PathLike]=None,
|
|
lang: str='zh',
|
|
sample_rate: int=16000,
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
decode_method: str='attention_rescoring',
|
|
am_predictor_conf: dict=None):
|
|
"""
|
|
Init model and other resources from a specific path.
|
|
"""
|
|
self.max_len = 50
|
|
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
|
|
tag = model_type + '-' + lang + '-' + sample_rate_str
|
|
self.max_len = 50
|
|
self.task_resource.set_task_model(model_tag=tag)
|
|
if cfg_path is None or am_model is None or am_params is None:
|
|
self.res_path = self.task_resource.res_dir
|
|
self.cfg_path = os.path.join(
|
|
self.res_path, self.task_resource.res_dict['cfg_path'])
|
|
|
|
self.am_model = os.path.join(self.res_path,
|
|
self.task_resource.res_dict['model'])
|
|
self.am_params = os.path.join(self.res_path,
|
|
self.task_resource.res_dict['params'])
|
|
logger.info(self.res_path)
|
|
logger.info(self.cfg_path)
|
|
logger.info(self.am_model)
|
|
logger.info(self.am_params)
|
|
else:
|
|
self.cfg_path = os.path.abspath(cfg_path)
|
|
self.am_model = os.path.abspath(am_model)
|
|
self.am_params = os.path.abspath(am_params)
|
|
self.res_path = os.path.dirname(
|
|
os.path.dirname(os.path.abspath(self.cfg_path)))
|
|
|
|
#Init body.
|
|
self.config = CfgNode(new_allowed=True)
|
|
self.config.merge_from_file(self.cfg_path)
|
|
|
|
with UpdateConfig(self.config):
|
|
if "deepspeech2" in model_type:
|
|
self.vocab = self.config.vocab_filepath
|
|
if self.config.spm_model_prefix:
|
|
self.config.spm_model_prefix = os.path.join(
|
|
self.res_path, self.config.spm_model_prefix)
|
|
self.text_feature = TextFeaturizer(
|
|
unit_type=self.config.unit_type,
|
|
vocab=self.vocab,
|
|
spm_model_prefix=self.config.spm_model_prefix)
|
|
self.config.decode.lang_model_path = os.path.join(
|
|
MODEL_HOME, 'language_model',
|
|
self.config.decode.lang_model_path)
|
|
|
|
lm_url = self.task_resource.res_dict['lm_url']
|
|
lm_md5 = self.task_resource.res_dict['lm_md5']
|
|
self.download_lm(
|
|
lm_url,
|
|
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
|
|
elif "conformer" in model_type or "transformer" in model_type:
|
|
raise Exception("wrong type")
|
|
else:
|
|
raise Exception("wrong type")
|
|
|
|
# AM predictor
|
|
self.am_predictor_conf = am_predictor_conf
|
|
self.am_predictor = init_predictor(
|
|
model_file=self.am_model,
|
|
params_file=self.am_params,
|
|
predictor_conf=self.am_predictor_conf)
|
|
|
|
# decoder
|
|
self.decoder = CTCDecoder(
|
|
odim=self.config.output_dim, # <blank> is in vocab
|
|
enc_n_units=self.config.rnn_layer_size * 2,
|
|
blank_id=self.config.blank_id,
|
|
dropout_rate=0.0,
|
|
reduction=True, # sum
|
|
batch_average=True, # sum / batch_size
|
|
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
|
|
|
|
@paddle.no_grad()
|
|
def infer(self, model_type: str):
|
|
"""
|
|
Model inference and result stored in self.output.
|
|
"""
|
|
cfg = self.config.decode
|
|
audio = self._inputs["audio"]
|
|
audio_len = self._inputs["audio_len"]
|
|
if "deepspeech2" in model_type:
|
|
decode_batch_size = audio.shape[0]
|
|
# init once
|
|
self.decoder.init_decoder(
|
|
decode_batch_size, self.text_feature.vocab_list,
|
|
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
|
|
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
|
|
cfg.num_proc_bsearch)
|
|
|
|
output_data = run_model(self.am_predictor,
|
|
[audio.numpy(), audio_len.numpy()])
|
|
|
|
probs = output_data[0]
|
|
eouts_len = output_data[1]
|
|
|
|
batch_size = probs.shape[0]
|
|
self.decoder.reset_decoder(batch_size=batch_size)
|
|
self.decoder.next(probs, eouts_len)
|
|
trans_best, trans_beam = self.decoder.decode()
|
|
|
|
# self.model.decoder.del_decoder()
|
|
self._outputs["result"] = trans_best[0]
|
|
|
|
elif "conformer" in model_type or "transformer" in model_type:
|
|
raise Exception("invalid model name")
|
|
else:
|
|
raise Exception("invalid model name")
|
|
|
|
|
|
class ASREngine(BaseEngine):
|
|
"""ASR server engine
|
|
|
|
Args:
|
|
metaclass: Defaults to Singleton.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(ASREngine, self).__init__()
|
|
|
|
def init(self, config: dict) -> bool:
|
|
"""init engine resource
|
|
|
|
Args:
|
|
config_file (str): config file
|
|
|
|
Returns:
|
|
bool: init failed or success
|
|
"""
|
|
self.executor = ASRServerExecutor()
|
|
self.config = config
|
|
self.engine_type = "inference"
|
|
|
|
try:
|
|
if self.config.am_predictor_conf.device is not None:
|
|
self.device = self.config.am_predictor_conf.device
|
|
else:
|
|
self.device = paddle.get_device()
|
|
|
|
paddle.set_device(self.device)
|
|
except Exception as e:
|
|
logger.error(
|
|
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
|
|
)
|
|
logger.error(e)
|
|
return False
|
|
|
|
self.executor._init_from_path(
|
|
model_type=self.config.model_type,
|
|
am_model=self.config.am_model,
|
|
am_params=self.config.am_params,
|
|
lang=self.config.lang,
|
|
sample_rate=self.config.sample_rate,
|
|
cfg_path=self.config.cfg_path,
|
|
decode_method=self.config.decode_method,
|
|
am_predictor_conf=self.config.am_predictor_conf)
|
|
|
|
logger.info("Initialize ASR server engine successfully.")
|
|
return True
|
|
|
|
|
|
class PaddleASRConnectionHandler(ASRServerExecutor):
|
|
def __init__(self, asr_engine):
|
|
"""The PaddleSpeech ASR Server Connection Handler
|
|
This connection process every asr server request
|
|
Args:
|
|
asr_engine (ASREngine): The ASR engine
|
|
"""
|
|
super().__init__()
|
|
self.input = None
|
|
self.output = None
|
|
self.asr_engine = asr_engine
|
|
self.executor = self.asr_engine.executor
|
|
self.config = self.executor.config
|
|
self.max_len = self.executor.max_len
|
|
self.decoder = self.executor.decoder
|
|
self.am_predictor = self.executor.am_predictor
|
|
self.text_feature = self.executor.text_feature
|
|
|
|
def run(self, audio_data):
|
|
"""engine run
|
|
|
|
Args:
|
|
audio_data (bytes): base64.b64decode
|
|
"""
|
|
if self._check(
|
|
io.BytesIO(audio_data), self.asr_engine.config.sample_rate,
|
|
self.asr_engine.config.force_yes):
|
|
logger.info("start running asr engine")
|
|
self.preprocess(self.asr_engine.config.model_type,
|
|
io.BytesIO(audio_data))
|
|
st = time.time()
|
|
self.infer(self.asr_engine.config.model_type)
|
|
infer_time = time.time() - st
|
|
self.output = self.postprocess() # Retrieve result of asr.
|
|
logger.info("end inferring asr engine")
|
|
else:
|
|
logger.info("file check failed!")
|
|
self.output = None
|
|
|
|
logger.info("inference time: {}".format(infer_time))
|
|
logger.info("asr engine type: paddle inference")
|