You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
9.5 KiB
247 lines
9.5 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Dict
|
|
|
|
import paddle
|
|
from paddle import distributed as dist
|
|
from paddle.io import DataLoader
|
|
from paddle.nn import Layer
|
|
from paddle.optimizer import Optimizer
|
|
from paddle.optimizer.lr import LRScheduler
|
|
|
|
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
|
|
from paddlespeech.t2s.training.reporter import report
|
|
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
|
|
from paddlespeech.t2s.training.updaters.standard_updater import UpdaterState
|
|
logging.basicConfig(
|
|
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
|
datefmt='[%Y-%m-%d %H:%M:%S]')
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
class MBMelGANUpdater(StandardUpdater):
|
|
def __init__(self,
|
|
models: Dict[str, Layer],
|
|
optimizers: Dict[str, Optimizer],
|
|
criterions: Dict[str, Layer],
|
|
schedulers: Dict[str, LRScheduler],
|
|
dataloader: DataLoader,
|
|
discriminator_train_start_steps: int,
|
|
lambda_adv: float,
|
|
output_dir: Path=None):
|
|
self.models = models
|
|
self.generator: Layer = models['generator']
|
|
self.discriminator: Layer = models['discriminator']
|
|
|
|
self.optimizers = optimizers
|
|
self.optimizer_g: Optimizer = optimizers['generator']
|
|
self.optimizer_d: Optimizer = optimizers['discriminator']
|
|
|
|
self.criterions = criterions
|
|
self.criterion_stft = criterions['stft']
|
|
self.criterion_sub_stft = criterions['sub_stft']
|
|
self.criterion_pqmf = criterions['pqmf']
|
|
self.criterion_gen_adv = criterions["gen_adv"]
|
|
self.criterion_dis_adv = criterions["dis_adv"]
|
|
|
|
self.schedulers = schedulers
|
|
self.scheduler_g = schedulers['generator']
|
|
self.scheduler_d = schedulers['discriminator']
|
|
|
|
self.dataloader = dataloader
|
|
|
|
self.discriminator_train_start_steps = discriminator_train_start_steps
|
|
self.lambda_adv = lambda_adv
|
|
self.state = UpdaterState(iteration=0, epoch=0)
|
|
|
|
self.train_iterator = iter(self.dataloader)
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def update_core(self, batch):
|
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
|
losses_dict = {}
|
|
|
|
# parse batch
|
|
wav, mel = batch
|
|
# Generator
|
|
# (B, out_channels, T ** prod(upsample_scales)
|
|
wav_ = self.generator(mel)
|
|
wav_mb_ = wav_
|
|
# (B, 1, out_channels*T ** prod(upsample_scales)
|
|
wav_ = self.criterion_pqmf.synthesis(wav_mb_)
|
|
|
|
# initialize
|
|
gen_loss = 0.0
|
|
|
|
# full band Multi-resolution stft loss
|
|
sc_loss, mag_loss = self.criterion_stft(wav_, wav)
|
|
# for balancing with subband stft loss
|
|
# Eq.(9) in paper
|
|
gen_loss += 0.5 * (sc_loss + mag_loss)
|
|
report("train/spectral_convergence_loss", float(sc_loss))
|
|
report("train/log_stft_magnitude_loss", float(mag_loss))
|
|
losses_dict["spectral_convergence_loss"] = float(sc_loss)
|
|
losses_dict["log_stft_magnitude_loss"] = float(mag_loss)
|
|
|
|
# sub band Multi-resolution stft loss
|
|
# (B, subbands, T // subbands)
|
|
wav_mb = self.criterion_pqmf.analysis(wav)
|
|
sub_sc_loss, sub_mag_loss = self.criterion_sub_stft(wav_mb_, wav_mb)
|
|
# Eq.(9) in paper
|
|
gen_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
|
|
report("train/sub_spectral_convergence_loss", float(sub_sc_loss))
|
|
report("train/sub_log_stft_magnitude_loss", float(sub_mag_loss))
|
|
losses_dict["sub_spectral_convergence_loss"] = float(sub_sc_loss)
|
|
losses_dict["sub_log_stft_magnitude_loss"] = float(sub_mag_loss)
|
|
|
|
## Adversarial loss
|
|
if self.state.iteration > self.discriminator_train_start_steps:
|
|
p_ = self.discriminator(wav_)
|
|
adv_loss = self.criterion_gen_adv(p_)
|
|
|
|
report("train/adversarial_loss", float(adv_loss))
|
|
losses_dict["adversarial_loss"] = float(adv_loss)
|
|
gen_loss += self.lambda_adv * adv_loss
|
|
|
|
report("train/generator_loss", float(gen_loss))
|
|
losses_dict["generator_loss"] = float(gen_loss)
|
|
|
|
self.optimizer_g.clear_grad()
|
|
gen_loss.backward()
|
|
|
|
self.optimizer_g.step()
|
|
self.scheduler_g.step()
|
|
|
|
# Disctiminator
|
|
if self.state.iteration > self.discriminator_train_start_steps:
|
|
# re-compute wav_ which leads better quality
|
|
with paddle.no_grad():
|
|
wav_ = self.generator(mel)
|
|
wav_ = self.criterion_pqmf.synthesis(wav_)
|
|
p = self.discriminator(wav)
|
|
p_ = self.discriminator(wav_.detach())
|
|
real_loss, fake_loss = self.criterion_dis_adv(p_, p)
|
|
dis_loss = real_loss + fake_loss
|
|
report("train/real_loss", float(real_loss))
|
|
report("train/fake_loss", float(fake_loss))
|
|
report("train/discriminator_loss", float(dis_loss))
|
|
losses_dict["real_loss"] = float(real_loss)
|
|
losses_dict["fake_loss"] = float(fake_loss)
|
|
losses_dict["discriminator_loss"] = float(dis_loss)
|
|
|
|
self.optimizer_d.clear_grad()
|
|
dis_loss.backward()
|
|
|
|
self.optimizer_d.step()
|
|
self.scheduler_d.step()
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
|
|
|
|
class MBMelGANEvaluator(StandardEvaluator):
|
|
def __init__(self,
|
|
models: Dict[str, Layer],
|
|
criterions: Dict[str, Layer],
|
|
dataloader: DataLoader,
|
|
lambda_adv: float,
|
|
output_dir: Path=None):
|
|
self.models = models
|
|
self.generator = models['generator']
|
|
self.discriminator = models['discriminator']
|
|
|
|
self.criterions = criterions
|
|
self.criterion_stft = criterions['stft']
|
|
self.criterion_sub_stft = criterions['sub_stft']
|
|
self.criterion_pqmf = criterions['pqmf']
|
|
self.criterion_gen_adv = criterions["gen_adv"]
|
|
self.criterion_dis_adv = criterions["dis_adv"]
|
|
|
|
self.dataloader = dataloader
|
|
self.lambda_adv = lambda_adv
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def evaluate_core(self, batch):
|
|
# logging.debug("Evaluate: ")
|
|
self.msg = "Evaluate: "
|
|
losses_dict = {}
|
|
|
|
wav, mel = batch
|
|
# Generator
|
|
# (B, out_channels, T ** prod(upsample_scales)
|
|
wav_ = self.generator(mel)
|
|
wav_mb_ = wav_
|
|
# (B, 1, out_channels*T ** prod(upsample_scales)
|
|
wav_ = self.criterion_pqmf.synthesis(wav_mb_)
|
|
|
|
## Adversarial loss
|
|
p_ = self.discriminator(wav_)
|
|
adv_loss = self.criterion_gen_adv(p_)
|
|
|
|
report("eval/adversarial_loss", float(adv_loss))
|
|
losses_dict["adversarial_loss"] = float(adv_loss)
|
|
gen_loss = self.lambda_adv * adv_loss
|
|
|
|
# Multi-resolution stft loss
|
|
sc_loss, mag_loss = self.criterion_stft(wav_, wav)
|
|
# Eq.(9) in paper
|
|
gen_loss += 0.5 * (sc_loss + mag_loss)
|
|
report("eval/spectral_convergence_loss", float(sc_loss))
|
|
report("eval/log_stft_magnitude_loss", float(mag_loss))
|
|
losses_dict["spectral_convergence_loss"] = float(sc_loss)
|
|
losses_dict["log_stft_magnitude_loss"] = float(mag_loss)
|
|
|
|
# sub band Multi-resolution stft loss
|
|
# (B, subbands, T // subbands)
|
|
wav_mb = self.criterion_pqmf.analysis(wav)
|
|
sub_sc_loss, sub_mag_loss = self.criterion_sub_stft(wav_mb_, wav_mb)
|
|
# Eq.(9) in paper
|
|
gen_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
|
|
report("eval/sub_spectral_convergence_loss", float(sub_sc_loss))
|
|
report("eval/sub_log_stft_magnitude_loss", float(sub_mag_loss))
|
|
losses_dict["sub_spectral_convergence_loss"] = float(sub_sc_loss)
|
|
losses_dict["sub_log_stft_magnitude_loss"] = float(sub_mag_loss)
|
|
|
|
report("eval/generator_loss", float(gen_loss))
|
|
losses_dict["generator_loss"] = float(gen_loss)
|
|
|
|
# Disctiminator
|
|
p = self.discriminator(wav)
|
|
real_loss, fake_loss = self.criterion_dis_adv(p_, p)
|
|
dis_loss = real_loss + fake_loss
|
|
report("eval/real_loss", float(real_loss))
|
|
report("eval/fake_loss", float(fake_loss))
|
|
report("eval/discriminator_loss", float(dis_loss))
|
|
|
|
losses_dict["real_loss"] = float(real_loss)
|
|
losses_dict["fake_loss"] = float(fake_loss)
|
|
losses_dict["discriminator_loss"] = float(dis_loss)
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
self.logger.info(self.msg)
|