You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
3.8 KiB
107 lines
3.8 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Contains the speech featurizer class."""
|
|
from paddlespeech.s2t.frontend.featurizer.audio_featurizer import AudioFeaturizer
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
|
|
|
|
class SpeechFeaturizer():
|
|
"""Speech and Text feature extraction.
|
|
"""
|
|
|
|
def __init__(self,
|
|
unit_type,
|
|
vocab_filepath,
|
|
spm_model_prefix=None,
|
|
spectrum_type='linear',
|
|
feat_dim=None,
|
|
delta_delta=False,
|
|
stride_ms=10.0,
|
|
window_ms=20.0,
|
|
n_fft=None,
|
|
max_freq=None,
|
|
target_sample_rate=16000,
|
|
use_dB_normalization=True,
|
|
target_dB=-20,
|
|
dither=1.0,
|
|
maskctc=False):
|
|
self.stride_ms = stride_ms
|
|
self.window_ms = window_ms
|
|
|
|
self.audio_feature = AudioFeaturizer(
|
|
spectrum_type=spectrum_type,
|
|
feat_dim=feat_dim,
|
|
delta_delta=delta_delta,
|
|
stride_ms=stride_ms,
|
|
window_ms=window_ms,
|
|
n_fft=n_fft,
|
|
max_freq=max_freq,
|
|
target_sample_rate=target_sample_rate,
|
|
use_dB_normalization=use_dB_normalization,
|
|
target_dB=target_dB,
|
|
dither=dither)
|
|
self.feature_size = self.audio_feature.feature_size
|
|
|
|
self.text_feature = TextFeaturizer(
|
|
unit_type=unit_type,
|
|
vocab_filepath=vocab_filepath,
|
|
spm_model_prefix=spm_model_prefix,
|
|
maskctc=maskctc)
|
|
self.vocab_size = self.text_feature.vocab_size
|
|
|
|
def featurize(self, speech_segment, keep_transcription_text):
|
|
"""Extract features for speech segment.
|
|
|
|
1. For audio parts, extract the audio features.
|
|
2. For transcript parts, keep the original text or convert text string
|
|
to a list of token indices in char-level.
|
|
|
|
Args:
|
|
speech_segment (SpeechSegment): Speech segment to extract features from.
|
|
keep_transcription_text (bool): True, keep transcript text, False, token ids
|
|
|
|
Returns:
|
|
tuple: 1) spectrogram audio feature in 2darray, 2) list oftoken indices.
|
|
"""
|
|
spec_feature = self.audio_feature.featurize(speech_segment)
|
|
|
|
if keep_transcription_text:
|
|
return spec_feature, speech_segment.transcript
|
|
|
|
if speech_segment.has_token:
|
|
text_ids = speech_segment.token_ids
|
|
else:
|
|
text_ids = self.text_feature.featurize(speech_segment.transcript)
|
|
return spec_feature, text_ids
|
|
|
|
def text_featurize(self, text, keep_transcription_text):
|
|
"""Extract features for speech segment.
|
|
|
|
1. For audio parts, extract the audio features.
|
|
2. For transcript parts, keep the original text or convert text string
|
|
to a list of token indices in char-level.
|
|
|
|
Args:
|
|
text (str): text.
|
|
keep_transcription_text (bool): True, keep transcript text, False, token ids
|
|
|
|
Returns:
|
|
(str|List[int]): text, or list of token indices.
|
|
"""
|
|
if keep_transcription_text:
|
|
return text
|
|
|
|
text_ids = self.text_feature.featurize(text)
|
|
return text_ids
|