You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
9.0 KiB
226 lines
9.0 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from deepspeech.models.ds2_online import DeepSpeech2ModelOnline
|
|
|
|
|
|
class TestDeepSpeech2ModelOnline(unittest.TestCase):
|
|
def setUp(self):
|
|
paddle.set_device('cpu')
|
|
|
|
self.batch_size = 2
|
|
self.feat_dim = 161
|
|
max_len = 210
|
|
|
|
# (B, T, D)
|
|
audio = np.random.randn(self.batch_size, max_len, self.feat_dim)
|
|
audio_len = np.random.randint(max_len, size=self.batch_size)
|
|
audio_len[-1] = max_len
|
|
# (B, U)
|
|
text = np.array([[1, 2], [1, 2]])
|
|
text_len = np.array([2] * self.batch_size)
|
|
|
|
self.audio = paddle.to_tensor(audio, dtype='float32')
|
|
self.audio_len = paddle.to_tensor(audio_len, dtype='int64')
|
|
self.text = paddle.to_tensor(text, dtype='int32')
|
|
self.text_len = paddle.to_tensor(text_len, dtype='int64')
|
|
|
|
def test_ds2_1(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=False)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_2(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=True)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_3(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=False)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_4(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=True)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_5(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=3,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=False)
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
def test_ds2_6(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=1,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=True)
|
|
model.eval()
|
|
paddle.device.set_device("cpu")
|
|
de_ch_size = 9
|
|
|
|
eouts, eouts_lens, final_state_h_box, final_state_c_box = model.encoder(
|
|
self.audio, self.audio_len)
|
|
eouts_by_chk_list, eouts_lens_by_chk_list, final_state_h_box_chk, final_state_c_box_chk = model.encoder.forward_chunk_by_chunk(
|
|
self.audio, self.audio_len, de_ch_size)
|
|
eouts_by_chk = paddle.concat(eouts_by_chk_list, axis=1)
|
|
eouts_lens_by_chk = paddle.add_n(eouts_lens_by_chk_list)
|
|
decode_max_len = eouts.shape[1]
|
|
print("dml", decode_max_len)
|
|
eouts_by_chk = eouts_by_chk[:, :decode_max_len, :]
|
|
self.assertEqual(
|
|
paddle.sum(
|
|
paddle.abs(paddle.subtract(eouts_lens, eouts_lens_by_chk))), 0)
|
|
self.assertEqual(
|
|
paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))), 0)
|
|
self.assertEqual(paddle.allclose(eouts_by_chk, eouts), True)
|
|
self.assertEqual(
|
|
paddle.allclose(final_state_h_box, final_state_h_box_chk), True)
|
|
self.assertEqual(
|
|
paddle.allclose(final_state_c_box, final_state_c_box_chk), True)
|
|
"""
|
|
print ("conv_x", conv_x)
|
|
print ("conv_x_by_chk", conv_x_by_chk)
|
|
print ("final_state_list", final_state_list)
|
|
#print ("final_state_list_by_chk", final_state_list_by_chk)
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,:de_ch_size,:], eouts_by_chk[:,:de_ch_size,:]))))
|
|
print (paddle.allclose(eouts[:,:de_ch_size,:], eouts_by_chk[:,:de_ch_size,:]))
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,de_ch_size:de_ch_size*2,:], eouts_by_chk[:,de_ch_size:de_ch_size*2,:]))))
|
|
print (paddle.allclose(eouts[:,de_ch_size:de_ch_size*2,:], eouts_by_chk[:,de_ch_size:de_ch_size*2,:]))
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,de_ch_size*2:de_ch_size*3,:], eouts_by_chk[:,de_ch_size*2:de_ch_size*3,:]))))
|
|
print (paddle.allclose(eouts[:,de_ch_size*2:de_ch_size*3,:], eouts_by_chk[:,de_ch_size*2:de_ch_size*3,:]))
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))))
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))))
|
|
print (paddle.allclose(eouts[:,:,:], eouts_by_chk[:,:,:]))
|
|
"""
|
|
|
|
"""
|
|
def split_into_chunk(self, x, x_lens, decoder_chunk_size, subsampling_rate,
|
|
receptive_field_length):
|
|
chunk_size = (decoder_chunk_size - 1
|
|
) * subsampling_rate + receptive_field_length
|
|
chunk_stride = subsampling_rate * decoder_chunk_size
|
|
max_len = x.shape[1]
|
|
assert (chunk_size <= max_len)
|
|
x_chunk_list = []
|
|
x_chunk_lens_list = []
|
|
padding_len = chunk_stride - (max_len - chunk_size) % chunk_stride
|
|
padding = paddle.zeros((x.shape[0], padding_len, x.shape[2]))
|
|
padded_x = paddle.concat([x, padding], axis=1)
|
|
num_chunk = (max_len + padding_len - chunk_size) / chunk_stride + 1
|
|
num_chunk = int(num_chunk)
|
|
for i in range(0, num_chunk):
|
|
start = i * chunk_stride
|
|
end = start + chunk_size
|
|
x_chunk = padded_x[:, start:end, :]
|
|
x_len_left = paddle.where(x_lens - i * chunk_stride < 0,
|
|
paddle.zeros_like(x_lens),
|
|
x_lens - i * chunk_stride)
|
|
x_chunk_len_tmp = paddle.ones_like(x_lens) * chunk_size
|
|
x_chunk_lens = paddle.where(x_len_left < x_chunk_len_tmp,
|
|
x_len_left, x_chunk_len_tmp)
|
|
x_chunk_list.append(x_chunk)
|
|
x_chunk_lens_list.append(x_chunk_lens)
|
|
|
|
return x_chunk_list, x_chunk_lens_list
|
|
|
|
def test_ds2_7(self):
|
|
model = DeepSpeech2ModelOnline(
|
|
feat_size=self.feat_dim,
|
|
dict_size=10,
|
|
num_conv_layers=2,
|
|
num_rnn_layers=1,
|
|
rnn_size=1024,
|
|
num_fc_layers=2,
|
|
fc_layers_size_list=[512, 256],
|
|
use_gru=True)
|
|
model.eval()
|
|
paddle.device.set_device("cpu")
|
|
de_ch_size = 9
|
|
|
|
audio_chunk_list, audio_chunk_lens_list = self.split_into_chunk(
|
|
self.audio, self.audio_len, de_ch_size,
|
|
model.encoder.conv.subsampling_rate,
|
|
model.encoder.conv.receptive_field_length)
|
|
eouts_prefix = None
|
|
eouts_lens_prefix = None
|
|
chunk_state_list = [None] * model.encoder.num_rnn_layers
|
|
for i, audio_chunk in enumerate(audio_chunk_list):
|
|
audio_chunk_lens = audio_chunk_lens_list[i]
|
|
eouts_prefix, eouts_lens_prefix, chunk_state_list = model.decode_prob_by_chunk(
|
|
audio_chunk, audio_chunk_lens, eouts_prefix, eouts_lens_prefix,
|
|
chunk_state_list)
|
|
# print (i, probs_pre_chunks.shape)
|
|
|
|
probs, eouts, eouts_lens, final_state_list = model.decode_prob(
|
|
self.audio, self.audio_len)
|
|
|
|
decode_max_len = probs.shape[1]
|
|
probs_pre_chunks = probs_pre_chunks[:, :decode_max_len, :]
|
|
self.assertEqual(paddle.allclose(probs, probs_pre_chunks), True)
|
|
"""
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|