You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/training/optimizer/__init__.py

122 lines
4.0 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
from typing import Any
from typing import Dict
from typing import Text
import paddle
from paddle.optimizer import Optimizer
from paddle.regularizer import L2Decay
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.dynamic_import import instance_class
from paddlespeech.s2t.utils.log import Log
__all__ = ["OptimizerFactory"]
logger = Log(__name__).getlog()
OPTIMIZER_DICT = {
"sgd": "paddle.optimizer:SGD",
"momentum": "paddle.optimizer:Momentum",
"adadelta": "paddle.optimizer:Adadelta",
"adam": "paddle.optimizer:Adam",
"adamw": "paddle.optimizer:AdamW",
}
def register_optimizer(cls):
"""Register optimizer."""
alias = cls.__name__.lower()
OPTIMIZER_DICT[cls.__name__.lower()] = cls.__module__ + ":" + cls.__name__
return cls
@register_optimizer
class Noam(paddle.optimizer.Adam):
"""Seem to: espnet/nets/pytorch_backend/transformer/optimizer.py """
def __init__(self,
learning_rate=0,
beta1=0.9,
beta2=0.98,
epsilon=1e-9,
parameters=None,
weight_decay=None,
grad_clip=None,
lazy_mode=False,
multi_precision=False,
name=None):
super().__init__(
learning_rate=learning_rate,
beta1=beta1,
beta2=beta2,
epsilon=epsilon,
parameters=parameters,
weight_decay=weight_decay,
grad_clip=grad_clip,
lazy_mode=lazy_mode,
multi_precision=multi_precision,
name=name)
def __repr__(self):
echo = f"<{self.__class__.__module__}.{self.__class__.__name__} object at {hex(id(self))}> "
echo += f"learning_rate: {self._learning_rate}, "
echo += f"(beta1: {self._beta1} beta2: {self._beta2}), "
echo += f"epsilon: {self._epsilon}"
def dynamic_import_optimizer(module):
"""Import Optimizer class dynamically.
Args:
module (str): module_name:class_name or alias in `OPTIMIZER_DICT`
Returns:
type: Optimizer class
"""
module_class = dynamic_import(module, OPTIMIZER_DICT)
assert issubclass(module_class,
Optimizer), f"{module} does not implement Optimizer"
return module_class
class OptimizerFactory():
@classmethod
def from_args(cls, name: str, args: Dict[Text, Any]):
assert "parameters" in args, "parameters not in args."
assert "learning_rate" in args, "learning_rate not in args."
grad_clip = paddle.nn.ClipGradByGlobalNorm(
args['grad_clip']) if "grad_clip" in args else None
weight_decay = L2Decay(
args['weight_decay']) if "weight_decay" in args else None
if weight_decay:
logger.info(f'<WeightDecay - {weight_decay}>')
if grad_clip:
logger.info(f'<GradClip - {grad_clip}>')
module_class = dynamic_import_optimizer(name.lower())
args.update({"grad_clip": grad_clip, "weight_decay": weight_decay})
opt = instance_class(module_class, args)
if "__repr__" in vars(opt):
logger.info(f"{opt}")
else:
logger.info(
f"<Optimizer {module_class.__module__}.{module_class.__name__}> LR: {args['learning_rate']}"
)
return opt