You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/frontend/featurizer/audio_featurizer.py

363 lines
15 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains the audio featurizer class."""
import numpy as np
import paddle
import paddleaudio.compliance.kaldi as kaldi
from python_speech_features import delta
from python_speech_features import mfcc
class AudioFeaturizer():
"""Audio featurizer, for extracting features from audio contents of
AudioSegment or SpeechSegment.
Currently, it supports feature types of linear spectrogram and mfcc.
:param spectrum_type: Specgram feature type. Options: 'linear'.
:type spectrum_type: str
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: When spectrum_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned; when spectrum_type is 'mfcc', max_feq is the
highest band edge of mel filters.
:types max_freq: None|float
:param target_sample_rate: Audio are resampled (if upsampling or
downsampling is allowed) to this before
extracting spectrogram features.
:type target_sample_rate: float
:param use_dB_normalization: Whether to normalize the audio to a certain
decibels before extracting the features.
:type use_dB_normalization: bool
:param target_dB: Target audio decibels for normalization.
:type target_dB: float
"""
def __init__(self,
spectrum_type: str='linear',
feat_dim: int=None,
delta_delta: bool=False,
stride_ms=10.0,
window_ms=20.0,
n_fft=None,
max_freq=None,
target_sample_rate=16000,
use_dB_normalization=True,
target_dB=-20,
dither=1.0):
self._spectrum_type = spectrum_type
# mfcc and fbank using `feat_dim`
self._feat_dim = feat_dim
# mfcc and fbank using `delta-delta`
self._delta_delta = delta_delta
self._stride_ms = stride_ms
self._window_ms = window_ms
self._max_freq = max_freq
self._target_sample_rate = target_sample_rate
self._use_dB_normalization = use_dB_normalization
self._target_dB = target_dB
self._fft_point = n_fft
self._dither = dither
def featurize(self,
audio_segment,
allow_downsampling=True,
allow_upsampling=True):
"""Extract audio features from AudioSegment or SpeechSegment.
:param audio_segment: Audio/speech segment to extract features from.
:type audio_segment: AudioSegment|SpeechSegment
:param allow_downsampling: Whether to allow audio downsampling before
featurizing.
:type allow_downsampling: bool
:param allow_upsampling: Whether to allow audio upsampling before
featurizing.
:type allow_upsampling: bool
:return: Spectrogram audio feature in 2darray.
:rtype: ndarray
:raises ValueError: If audio sample rate is not supported.
"""
# upsampling or downsampling
if ((audio_segment.sample_rate > self._target_sample_rate and
allow_downsampling) or
(audio_segment.sample_rate < self._target_sample_rate and
allow_upsampling)):
audio_segment.resample(self._target_sample_rate)
if audio_segment.sample_rate != self._target_sample_rate:
raise ValueError("Audio sample rate is not supported. "
"Turn allow_downsampling or allow up_sampling on.")
# decibel normalization
if self._use_dB_normalization:
audio_segment.normalize(target_db=self._target_dB)
# extract spectrogram
return self._compute_specgram(audio_segment)
@property
def stride_ms(self):
return self._stride_ms
@property
def feature_size(self):
"""audio feature size"""
feat_dim = 0
if self._spectrum_type == 'linear':
fft_point = self._window_ms if self._fft_point is None else self._fft_point
feat_dim = int(fft_point * (self._target_sample_rate / 1000) / 2 +
1)
elif self._spectrum_type == 'mfcc':
# mfcc, delta, delta-delta
feat_dim = int(self._feat_dim *
3) if self._delta_delta else int(self._feat_dim)
elif self._spectrum_type == 'fbank':
# fbank, delta, delta-delta
feat_dim = int(self._feat_dim *
3) if self._delta_delta else int(self._feat_dim)
else:
raise ValueError("Unknown spectrum_type %s. "
"Supported values: linear." % self._spectrum_type)
return feat_dim
def _compute_specgram(self, audio_segment):
"""Extract various audio features."""
sample_rate = audio_segment.sample_rate
if self._spectrum_type == 'linear':
samples = audio_segment.samples
return self._compute_linear_specgram(
samples,
sample_rate,
stride_ms=self._stride_ms,
window_ms=self._window_ms,
max_freq=self._max_freq)
elif self._spectrum_type == 'mfcc':
samples = audio_segment.to('int16')
return self._compute_mfcc(
samples,
sample_rate,
feat_dim=self._feat_dim,
stride_ms=self._stride_ms,
window_ms=self._window_ms,
max_freq=self._max_freq,
dither=self._dither,
delta_delta=self._delta_delta)
elif self._spectrum_type == 'fbank':
samples = audio_segment.to('int16')
return self._compute_fbank(
samples,
sample_rate,
feat_dim=self._feat_dim,
stride_ms=self._stride_ms,
window_ms=self._window_ms,
max_freq=self._max_freq,
dither=self._dither,
delta_delta=self._delta_delta)
else:
raise ValueError("Unknown spectrum_type %s. "
"Supported values: linear." % self._spectrum_type)
def _specgram_real(self, samples, window_size, stride_size, sample_rate):
"""Compute the spectrogram for samples from a real signal."""
# extract strided windows
truncate_size = (len(samples) - window_size) % stride_size
samples = samples[:len(samples) - truncate_size]
nshape = (window_size, (len(samples) - window_size) // stride_size + 1)
nstrides = (samples.strides[0], samples.strides[0] * stride_size)
windows = np.lib.stride_tricks.as_strided(
samples, shape=nshape, strides=nstrides)
assert np.all(
windows[:, 1] == samples[stride_size:(stride_size + window_size)])
# window weighting, squared Fast Fourier Transform (fft), scaling
weighting = np.hanning(window_size)[:, None]
# https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html
fft = np.fft.rfft(windows * weighting, n=None, axis=0)
fft = np.absolute(fft)
fft = fft**2
scale = np.sum(weighting**2) * sample_rate
fft[1:-1, :] *= (2.0 / scale)
fft[(0, -1), :] /= scale
# prepare fft frequency list
freqs = float(sample_rate) / window_size * np.arange(fft.shape[0])
return fft, freqs
def _compute_linear_specgram(self,
samples,
sample_rate,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
eps=1e-14):
"""Compute the linear spectrogram from FFT energy.
Args:
samples ([type]): [description]
sample_rate ([type]): [description]
stride_ms (float, optional): [description]. Defaults to 10.0.
window_ms (float, optional): [description]. Defaults to 20.0.
max_freq ([type], optional): [description]. Defaults to None.
eps ([type], optional): [description]. Defaults to 1e-14.
Raises:
ValueError: [description]
ValueError: [description]
Returns:
np.ndarray: log spectrogram, (time, freq)
"""
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must not be greater than half of "
"sample rate.")
if stride_ms > window_ms:
raise ValueError("Stride size must not be greater than "
"window size.")
stride_size = int(0.001 * sample_rate * stride_ms)
window_size = int(0.001 * sample_rate * window_ms)
specgram, freqs = self._specgram_real(
samples,
window_size=window_size,
stride_size=stride_size,
sample_rate=sample_rate)
ind = np.where(freqs <= max_freq)[0][-1] + 1
# (freq, time)
spec = np.log(specgram[:ind, :] + eps)
return np.transpose(spec)
def _concat_delta_delta(self, feat):
"""append delat, delta-delta feature.
Args:
feat (np.ndarray): (T, D)
Returns:
np.ndarray: feat with delta-delta, (T, 3*D)
"""
# Deltas
d_feat = delta(feat, 2)
# Deltas-Deltas
dd_feat = delta(feat, 2)
# concat above three features
concat_feat = np.concatenate((feat, d_feat, dd_feat), axis=1)
return concat_feat
def _compute_mfcc(self,
samples,
sample_rate,
feat_dim=13,
stride_ms=10.0,
window_ms=25.0,
max_freq=None,
dither=1.0,
delta_delta=True):
"""Compute mfcc from samples.
Args:
samples (np.ndarray, np.int16): the audio signal from which to compute features.
sample_rate (float): the sample rate of the signal we are working with, in Hz.
feat_dim (int): the number of cepstrum to return, default 13.
stride_ms (float, optional): stride length in ms. Defaults to 10.0.
window_ms (float, optional): window length in ms. Defaults to 25.0.
max_freq ([type], optional): highest band edge of mel filters. In Hz, default is samplerate/2. Defaults to None.
delta_delta (bool, optional): Whether with delta delta. Defaults to False.
Raises:
ValueError: max_freq > samplerate/2
ValueError: stride_ms > window_ms
Returns:
np.ndarray: mfcc feature, (D, T).
"""
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must not be greater than half of "
"sample rate.")
if stride_ms > window_ms:
raise ValueError("Stride size must not be greater than "
"window size.")
# compute the 13 cepstral coefficients, and the first one is replaced
# by log(frame energy), (T, D)
mfcc_feat = mfcc(
signal=samples,
samplerate=sample_rate,
winlen=0.001 * window_ms,
winstep=0.001 * stride_ms,
numcep=feat_dim,
nfilt=23,
nfft=512,
lowfreq=20,
highfreq=max_freq,
dither=dither,
remove_dc_offset=True,
preemph=0.97,
ceplifter=22,
useEnergy=True,
winfunc='povey')
if delta_delta:
mfcc_feat = self._concat_delta_delta(mfcc_feat)
return mfcc_feat
def _compute_fbank(self,
samples,
sample_rate,
feat_dim=40,
stride_ms=10.0,
window_ms=25.0,
max_freq=None,
dither=1.0,
delta_delta=False):
"""Compute logfbank from samples.
Args:
samples (np.ndarray, np.int16): the audio signal from which to compute features. Should be an N*1 array
sample_rate (float): the sample rate of the signal we are working with, in Hz.
feat_dim (int): the number of cepstrum to return, default 13.
stride_ms (float, optional): stride length in ms. Defaults to 10.0.
window_ms (float, optional): window length in ms. Defaults to 20.0.
max_freq (float, optional): highest band edge of mel filters. In Hz, default is samplerate/2. Defaults to None.
delta_delta (bool, optional): Whether with delta delta. Defaults to False.
Raises:
ValueError: max_freq > samplerate/2
ValueError: stride_ms > window_ms
Returns:
np.ndarray: mfcc feature, (D, T).
"""
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must not be greater than half of "
"sample rate.")
if stride_ms > window_ms:
raise ValueError("Stride size must not be greater than "
"window size.")
# (T, D)
waveform = paddle.to_tensor(
np.expand_dims(samples, 0), dtype=paddle.float32)
mat = kaldi.fbank(
waveform,
n_mels=feat_dim,
frame_length=window_ms, # default : 25
frame_shift=stride_ms, # default : 10
dither=dither,
energy_floor=0.0,
sr=sample_rate)
fbank_feat = np.squeeze(mat.numpy())
if delta_delta:
fbank_feat = self._concat_delta_delta(fbank_feat)
return fbank_feat