You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
2.1 KiB
85 lines
2.1 KiB
#!/bin/bash
|
|
set -eo pipefail
|
|
|
|
#. path.sh
|
|
|
|
# attention, please replace the vocab is only for this script.
|
|
# different acustic model has different vocab
|
|
ckpt_dir=data/model/asr1_chunk_conformer_u2pp_wenetspeech_static_1.3.0.model
|
|
unit=$ckpt_dir/vocab.txt # vocab file, line: char/spm_pice
|
|
model_dir=$ckpt_dir/exp/deepspeech2_online/checkpoints/
|
|
|
|
stage=2
|
|
stop_stage=100
|
|
corpus=aishell
|
|
lexicon=data/lexicon.txt # line: word ph0 ... phn, aishell/resource_aishell/lexicon.txt
|
|
text=data/text # line: utt text, aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
|
|
|
|
. utils/parse_options.sh
|
|
|
|
data=$PWD/data
|
|
mkdir -p $data
|
|
|
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
|
if [ ! -f $data/speech.ngram.zh.tar.gz ];then
|
|
# download ngram
|
|
pushd $data
|
|
wget -c http://paddlespeech.bj.bcebos.com/speechx/examples/ngram/zh/speech.ngram.zh.tar.gz
|
|
tar xvzf speech.ngram.zh.tar.gz
|
|
popd
|
|
fi
|
|
fi
|
|
|
|
if [ ! -f $unit ]; then
|
|
echo "$0: No such file $unit"
|
|
exit 1;
|
|
fi
|
|
|
|
if ! which ngram-count; then
|
|
# need srilm install
|
|
pushd $MAIN_ROOT/tools
|
|
make srilm.done
|
|
popd
|
|
fi
|
|
|
|
echo "done."
|
|
mkdir -p data/local/dict
|
|
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
|
# Prepare dict
|
|
# line: char/spm_pices
|
|
cp $unit data/local/dict/units.txt
|
|
|
|
if [ ! -f $lexicon ];then
|
|
utils/text_to_lexicon.py --has_key true --text $text --lexicon $lexicon
|
|
echo "Generate $lexicon from $text"
|
|
fi
|
|
|
|
# filter by vocab
|
|
# line: word ph0 ... phn -> line: word char0 ... charn
|
|
utils/fst/prepare_dict.py \
|
|
--unit_file $unit \
|
|
--in_lexicon ${lexicon} \
|
|
--out_lexicon data/local/dict/lexicon.txt
|
|
fi
|
|
|
|
lm=data/local/lm
|
|
mkdir -p $lm
|
|
|
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
|
# Train ngram lm
|
|
cp $text $lm/text
|
|
local/aishell_train_lms.sh
|
|
echo "build LM done."
|
|
fi
|
|
|
|
# build TLG
|
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
|
# build T & L
|
|
utils/fst/compile_lexicon_token_fst.sh \
|
|
data/local/dict data/local/tmp data/local/lang
|
|
|
|
# build G & TLG
|
|
utils/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1;
|
|
|
|
fi
|