You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
249 lines
9.7 KiB
249 lines
9.7 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from wenet(https://github.com/wenet-e2e/wenet)
|
|
"""Decoder definition."""
|
|
from typing import Any
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from typeguard import check_argument_types
|
|
|
|
from paddlespeech.s2t.decoders.scorers.scorer_interface import BatchScorerInterface
|
|
from paddlespeech.s2t.modules.attention import MultiHeadedAttention
|
|
from paddlespeech.s2t.modules.decoder_layer import DecoderLayer
|
|
from paddlespeech.s2t.modules.embedding import PositionalEncoding
|
|
from paddlespeech.s2t.modules.mask import make_non_pad_mask
|
|
from paddlespeech.s2t.modules.mask import make_xs_mask
|
|
from paddlespeech.s2t.modules.mask import subsequent_mask
|
|
from paddlespeech.s2t.modules.positionwise_feed_forward import PositionwiseFeedForward
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
__all__ = ["TransformerDecoder"]
|
|
|
|
|
|
class TransformerDecoder(BatchScorerInterface, nn.Layer):
|
|
"""Base class of Transfomer decoder module.
|
|
Args:
|
|
vocab_size: output dim
|
|
encoder_output_size: dimension of attention
|
|
attention_heads: the number of heads of multi head attention
|
|
linear_units: the hidden units number of position-wise feedforward
|
|
num_blocks: the number of decoder blocks
|
|
dropout_rate: dropout rate
|
|
self_attention_dropout_rate: dropout rate for attention
|
|
input_layer: input layer type, `embed`
|
|
use_output_layer: whether to use output layer
|
|
pos_enc_class: PositionalEncoding module
|
|
normalize_before:
|
|
True: use layer_norm before each sub-block of a layer.
|
|
False: use layer_norm after each sub-block of a layer.
|
|
concat_after: whether to concat attention layer's input and output
|
|
True: x -> x + linear(concat(x, att(x)))
|
|
False: x -> x + att(x)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size: int,
|
|
encoder_output_size: int,
|
|
attention_heads: int=4,
|
|
linear_units: int=2048,
|
|
num_blocks: int=6,
|
|
dropout_rate: float=0.1,
|
|
positional_dropout_rate: float=0.1,
|
|
self_attention_dropout_rate: float=0.0,
|
|
src_attention_dropout_rate: float=0.0,
|
|
input_layer: str="embed",
|
|
use_output_layer: bool=True,
|
|
normalize_before: bool=True,
|
|
concat_after: bool=False, ):
|
|
|
|
assert check_argument_types()
|
|
nn.Layer.__init__(self)
|
|
self.selfattention_layer_type = 'selfattn'
|
|
attention_dim = encoder_output_size
|
|
|
|
if input_layer == "embed":
|
|
self.embed = nn.Sequential(
|
|
nn.Embedding(vocab_size, attention_dim),
|
|
PositionalEncoding(attention_dim, positional_dropout_rate), )
|
|
else:
|
|
raise ValueError(f"only 'embed' is supported: {input_layer}")
|
|
|
|
self.normalize_before = normalize_before
|
|
self.after_norm = nn.LayerNorm(attention_dim, epsilon=1e-12)
|
|
self.use_output_layer = use_output_layer
|
|
self.output_layer = nn.Linear(attention_dim, vocab_size)
|
|
|
|
self.decoders = nn.LayerList([
|
|
DecoderLayer(
|
|
size=attention_dim,
|
|
self_attn=MultiHeadedAttention(attention_heads, attention_dim,
|
|
self_attention_dropout_rate),
|
|
src_attn=MultiHeadedAttention(attention_heads, attention_dim,
|
|
src_attention_dropout_rate),
|
|
feed_forward=PositionwiseFeedForward(
|
|
attention_dim, linear_units, dropout_rate),
|
|
dropout_rate=dropout_rate,
|
|
normalize_before=normalize_before,
|
|
concat_after=concat_after, ) for _ in range(num_blocks)
|
|
])
|
|
|
|
def forward(
|
|
self,
|
|
memory: paddle.Tensor,
|
|
memory_mask: paddle.Tensor,
|
|
ys_in_pad: paddle.Tensor,
|
|
ys_in_lens: paddle.Tensor, ) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
"""Forward decoder.
|
|
Args:
|
|
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
|
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
|
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
|
ys_in_lens: input lengths of this batch (batch)
|
|
Returns:
|
|
(tuple): tuple containing:
|
|
x: decoded token score before softmax (batch, maxlen_out, vocab_size)
|
|
if use_output_layer is True,
|
|
olens: (batch, )
|
|
"""
|
|
tgt = ys_in_pad
|
|
# tgt_mask: (B, 1, L)
|
|
tgt_mask = (make_non_pad_mask(ys_in_lens).unsqueeze(1))
|
|
# m: (1, L, L)
|
|
m = subsequent_mask(tgt_mask.shape[-1]).unsqueeze(0)
|
|
# tgt_mask: (B, L, L)
|
|
# TODO(Hui Zhang): not support & for tensor
|
|
# tgt_mask = tgt_mask & m
|
|
tgt_mask = tgt_mask.logical_and(m)
|
|
|
|
x, _ = self.embed(tgt)
|
|
for layer in self.decoders:
|
|
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
|
|
memory_mask)
|
|
if self.normalize_before:
|
|
x = self.after_norm(x)
|
|
if self.use_output_layer:
|
|
x = self.output_layer(x)
|
|
|
|
# TODO(Hui Zhang): reduce_sum not support bool type
|
|
# olens = tgt_mask.sum(1)
|
|
olens = tgt_mask.astype(paddle.int).sum(1)
|
|
return x, olens
|
|
|
|
def forward_one_step(
|
|
self,
|
|
memory: paddle.Tensor,
|
|
memory_mask: paddle.Tensor,
|
|
tgt: paddle.Tensor,
|
|
tgt_mask: paddle.Tensor,
|
|
cache: Optional[List[paddle.Tensor]]=None,
|
|
) -> Tuple[paddle.Tensor, List[paddle.Tensor]]:
|
|
"""Forward one step.
|
|
This is only used for decoding.
|
|
Args:
|
|
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
|
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
|
tgt: input token ids, int64 (batch, maxlen_out)
|
|
tgt_mask: input token mask, (batch, maxlen_out, maxlen_out)
|
|
dtype=paddle.bool
|
|
cache: cached output list of (batch, max_time_out-1, size)
|
|
Returns:
|
|
y, cache: NN output value and cache per `self.decoders`.
|
|
y.shape` is (batch, token)
|
|
"""
|
|
x, _ = self.embed(tgt)
|
|
new_cache = []
|
|
for i, decoder in enumerate(self.decoders):
|
|
if cache is None:
|
|
c = None
|
|
else:
|
|
c = cache[i]
|
|
x, tgt_mask, memory, memory_mask = decoder(
|
|
x, tgt_mask, memory, memory_mask, cache=c)
|
|
new_cache.append(x)
|
|
if self.normalize_before:
|
|
y = self.after_norm(x[:, -1])
|
|
else:
|
|
y = x[:, -1]
|
|
if self.use_output_layer:
|
|
y = paddle.log_softmax(self.output_layer(y), axis=-1)
|
|
return y, new_cache
|
|
|
|
# beam search API (see ScorerInterface)
|
|
def score(self, ys, state, x):
|
|
"""Score.
|
|
ys: (ylen,)
|
|
x: (xlen, n_feat)
|
|
"""
|
|
ys_mask = subsequent_mask(len(ys)).unsqueeze(0) # (B,L,L)
|
|
x_mask = make_xs_mask(x.unsqueeze(0)).unsqueeze(1) # (B,1,T)
|
|
if self.selfattention_layer_type != "selfattn":
|
|
# TODO(karita): implement cache
|
|
logging.warning(
|
|
f"{self.selfattention_layer_type} does not support cached decoding."
|
|
)
|
|
state = None
|
|
logp, state = self.forward_one_step(
|
|
x.unsqueeze(0), x_mask, ys.unsqueeze(0), ys_mask, cache=state)
|
|
return logp.squeeze(0), state
|
|
|
|
# batch beam search API (see BatchScorerInterface)
|
|
def batch_score(self,
|
|
ys: paddle.Tensor,
|
|
states: List[Any],
|
|
xs: paddle.Tensor) -> Tuple[paddle.Tensor, List[Any]]:
|
|
"""Score new token batch (required).
|
|
|
|
Args:
|
|
ys (paddle.Tensor): paddle.int64 prefix tokens (n_batch, ylen).
|
|
states (List[Any]): Scorer states for prefix tokens.
|
|
xs (paddle.Tensor):
|
|
The encoder feature that generates ys (n_batch, xlen, n_feat).
|
|
|
|
Returns:
|
|
tuple[paddle.Tensor, List[Any]]: Tuple of
|
|
batchfied scores for next token with shape of `(n_batch, n_vocab)`
|
|
and next state list for ys.
|
|
|
|
"""
|
|
# merge states
|
|
n_batch = len(ys)
|
|
n_layers = len(self.decoders)
|
|
if states[0] is None:
|
|
batch_state = None
|
|
else:
|
|
# transpose state of [batch, layer] into [layer, batch]
|
|
batch_state = [
|
|
paddle.stack([states[b][i] for b in range(n_batch)])
|
|
for i in range(n_layers)
|
|
]
|
|
|
|
# batch decoding
|
|
ys_mask = subsequent_mask(ys.size(-1)).unsqueeze(0) # (B,L,L)
|
|
xs_mask = make_xs_mask(xs).unsqueeze(1) # (B,1,T)
|
|
logp, states = self.forward_one_step(
|
|
xs, xs_mask, ys, ys_mask, cache=batch_state)
|
|
|
|
# transpose state of [layer, batch] into [batch, layer]
|
|
state_list = [[states[i][b] for i in range(n_layers)]
|
|
for b in range(n_batch)]
|
|
return logp, state_list
|