You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
7.0 KiB
201 lines
7.0 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import io
|
|
from collections import OrderedDict
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from paddleaudio.backends import load as load_audio
|
|
from paddleaudio.compliance.librosa import melspectrogram
|
|
from paddlespeech.cli.log import logger
|
|
from paddlespeech.cli.vector.infer import VectorExecutor
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
from paddlespeech.vector.io.batch import feature_normalize
|
|
|
|
|
|
class PaddleVectorConnectionHandler:
|
|
def __init__(self, vector_engine):
|
|
"""The PaddleSpeech Vector Server Connection Handler
|
|
This connection process every server request
|
|
Args:
|
|
vector_engine (VectorEngine): The Vector engine
|
|
"""
|
|
super().__init__()
|
|
logger.info(
|
|
"Create PaddleVectorConnectionHandler to process the vector request")
|
|
self.vector_engine = vector_engine
|
|
self.executor = self.vector_engine.executor
|
|
self.task = self.vector_engine.executor.task
|
|
self.model = self.vector_engine.executor.model
|
|
self.config = self.vector_engine.executor.config
|
|
|
|
self._inputs = OrderedDict()
|
|
self._outputs = OrderedDict()
|
|
|
|
@paddle.no_grad()
|
|
def run(self, audio_data, task="spk"):
|
|
"""The connection process the http request audio
|
|
|
|
Args:
|
|
audio_data (bytes): base64.b64decode
|
|
|
|
Returns:
|
|
str: the punctuation text
|
|
"""
|
|
logger.info(
|
|
f"start to extract the do vector {self.task} from the http request")
|
|
if self.task == "spk" and task == "spk":
|
|
embedding = self.extract_audio_embedding(audio_data)
|
|
return embedding
|
|
else:
|
|
logger.error(
|
|
"The request task is not matched with server model task")
|
|
logger.error(
|
|
f"The server model task is: {self.task}, but the request task is: {task}"
|
|
)
|
|
|
|
return np.array([
|
|
0.0,
|
|
])
|
|
|
|
@paddle.no_grad()
|
|
def get_enroll_test_score(self, enroll_audio, test_audio):
|
|
"""Get the enroll and test audio score
|
|
|
|
Args:
|
|
enroll_audio (str): the base64 format enroll audio
|
|
test_audio (str): the base64 format test audio
|
|
|
|
Returns:
|
|
float: the score between enroll and test audio
|
|
"""
|
|
logger.info("start to extract the enroll audio embedding")
|
|
enroll_emb = self.extract_audio_embedding(enroll_audio)
|
|
|
|
logger.info("start to extract the test audio embedding")
|
|
test_emb = self.extract_audio_embedding(test_audio)
|
|
|
|
logger.info(
|
|
"start to get the score between the enroll and test embedding")
|
|
score = self.executor.get_embeddings_score(enroll_emb, test_emb)
|
|
|
|
logger.info(f"get the enroll vs test score: {score}")
|
|
return score
|
|
|
|
@paddle.no_grad()
|
|
def extract_audio_embedding(self, audio: str, sample_rate: int=16000):
|
|
"""extract the audio embedding
|
|
|
|
Args:
|
|
audio (str): the audio data
|
|
sample_rate (int, optional): the audio sample rate. Defaults to 16000.
|
|
"""
|
|
# we can not reuse the cache io.BytesIO(audio) data,
|
|
# because the soundfile will change the io.BytesIO(audio) to the end
|
|
# thus we should convert the base64 string to io.BytesIO when we need the audio data
|
|
if not self.executor._check(io.BytesIO(audio), sample_rate):
|
|
logger.info("check the audio sample rate occurs error")
|
|
return np.array([0.0])
|
|
|
|
waveform, sr = load_audio(io.BytesIO(audio))
|
|
logger.info(f"load the audio sample points, shape is: {waveform.shape}")
|
|
|
|
# stage 2: get the audio feat
|
|
# Note: Now we only support fbank feature
|
|
try:
|
|
feats = melspectrogram(
|
|
x=waveform,
|
|
sr=self.config.sr,
|
|
n_mels=self.config.n_mels,
|
|
window_size=self.config.window_size,
|
|
hop_length=self.config.hop_size)
|
|
logger.info(f"extract the audio feats, shape is: {feats.shape}")
|
|
except Exception as e:
|
|
logger.info(f"feats occurs exception {e}")
|
|
sys.exit(-1)
|
|
|
|
feats = paddle.to_tensor(feats).unsqueeze(0)
|
|
# in inference period, the lengths is all one without padding
|
|
lengths = paddle.ones([1])
|
|
|
|
# stage 3: we do feature normalize,
|
|
# Now we assume that the feats must do normalize
|
|
feats = feature_normalize(feats, mean_norm=True, std_norm=False)
|
|
|
|
# stage 4: store the feats and length in the _inputs,
|
|
# which will be used in other function
|
|
logger.info(f"feats shape: {feats.shape}")
|
|
logger.info("audio extract the feats success")
|
|
|
|
logger.info("start to extract the audio embedding")
|
|
embedding = self.model.backbone(feats, lengths).squeeze().numpy()
|
|
logger.info(f"embedding size: {embedding.shape}")
|
|
|
|
return embedding
|
|
|
|
|
|
class VectorServerExecutor(VectorExecutor):
|
|
def __init__(self):
|
|
"""The wrapper for TextEcutor
|
|
"""
|
|
super().__init__()
|
|
pass
|
|
|
|
|
|
class VectorEngine(BaseEngine):
|
|
def __init__(self):
|
|
"""The Vector Engine
|
|
"""
|
|
super(VectorEngine, self).__init__()
|
|
logger.info("Create the VectorEngine Instance")
|
|
|
|
def init(self, config: dict):
|
|
"""Init the Vector Engine
|
|
|
|
Args:
|
|
config (dict): The server configuation
|
|
|
|
Returns:
|
|
bool: The engine instance flag
|
|
"""
|
|
logger.info("Init the vector engine")
|
|
try:
|
|
self.config = config
|
|
if self.config.device:
|
|
self.device = self.config.device
|
|
else:
|
|
self.device = paddle.get_device()
|
|
|
|
paddle.set_device(self.device)
|
|
logger.info(f"Vector Engine set the device: {self.device}")
|
|
except BaseException as e:
|
|
logger.error(
|
|
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
|
|
)
|
|
logger.error("Initialize Vector server engine Failed on device: %s."
|
|
% (self.device))
|
|
return False
|
|
|
|
self.executor = VectorServerExecutor()
|
|
|
|
self.executor._init_from_path(
|
|
model_type=config.model_type,
|
|
cfg_path=config.cfg_path,
|
|
ckpt_path=config.ckpt_path,
|
|
task=config.task)
|
|
|
|
logger.info("Init the Vector engine successfully")
|
|
return True
|