You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/frontend/zh_frontend.py

595 lines
24 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from operator import itemgetter
from typing import Dict
from typing import List
import jieba.posseg as psg
import numpy as np
import paddle
import yaml
from g2pM import G2pM
from pypinyin import lazy_pinyin
from pypinyin import load_phrases_dict
from pypinyin import load_single_dict
from pypinyin import Style
from pypinyin_dict.phrase_pinyin_data import large_pinyin
from paddlespeech.t2s.frontend.g2pw import G2PWOnnxConverter
from paddlespeech.t2s.frontend.generate_lexicon import generate_lexicon
from paddlespeech.t2s.frontend.tone_sandhi import ToneSandhi
from paddlespeech.t2s.frontend.zh_normalization.text_normlization import TextNormalizer
from paddlespeech.t2s.ssml.xml_processor import MixTextProcessor
INITIALS = [
'b', 'p', 'm', 'f', 'd', 't', 'n', 'l', 'g', 'k', 'h', 'zh', 'ch', 'sh',
'r', 'z', 'c', 's', 'j', 'q', 'x'
]
INITIALS += ['y', 'w', 'sp', 'spl', 'spn', 'sil']
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def insert_after_character(lst, item):
result = [item]
for phone in lst:
result.append(phone)
if phone not in INITIALS:
# finals has tones
# assert phone[-1] in "12345"
result.append(item)
return result
class Polyphonic():
def __init__(self):
with open(
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
'polyphonic.yaml'),
'r',
encoding='utf-8') as polyphonic_file:
# 解析yaml
polyphonic_dict = yaml.load(polyphonic_file, Loader=yaml.FullLoader)
self.polyphonic_words = polyphonic_dict["polyphonic"]
def correct_pronunciation(self, word, pinyin):
# 词汇被词典收录则返回纠正后的读音
if word in self.polyphonic_words.keys():
pinyin = self.polyphonic_words[word]
# 否则返回原读音
return pinyin
class Frontend():
def __init__(self,
g2p_model="g2pW",
phone_vocab_path=None,
tone_vocab_path=None):
self.mix_ssml_processor = MixTextProcessor()
self.tone_modifier = ToneSandhi()
self.text_normalizer = TextNormalizer()
self.punc = ":,;。?!“”‘’':,;.?!"
self.phrases_dict = {
'开户行': [['ka1i'], ['hu4'], ['hang2']],
'发卡行': [['fa4'], ['ka3'], ['hang2']],
'放款行': [['fa4ng'], ['kua3n'], ['hang2']],
'茧行': [['jia3n'], ['hang2']],
'行号': [['hang2'], ['ha4o']],
'各地': [['ge4'], ['di4']],
'借还款': [['jie4'], ['hua2n'], ['kua3n']],
'时间为': [['shi2'], ['jia1n'], ['we2i']],
'为准': [['we2i'], ['zhu3n']],
'色差': [['se4'], ['cha1']],
'': [['dia3']],
'': [['bei5']],
'': [['bu4']],
'': [['zuo5']],
'': [['lei5']],
'掺和': [['chan1'], ['huo5']]
}
# g2p_model can be pypinyin and g2pM and g2pW
self.g2p_model = g2p_model
if self.g2p_model == "g2pM":
self.g2pM_model = G2pM()
self.pinyin2phone = generate_lexicon(
with_tone=True, with_erhua=False)
elif self.g2p_model == "g2pW":
# use pypinyin as backup for non polyphonic characters in g2pW
self._init_pypinyin()
self.corrector = Polyphonic()
self.g2pM_model = G2pM()
self.g2pW_model = G2PWOnnxConverter(
style='pinyin', enable_non_tradional_chinese=True)
self.pinyin2phone = generate_lexicon(
with_tone=True, with_erhua=False)
else:
self._init_pypinyin()
self.must_erhua = {
"小院儿", "胡同儿", "范儿", "老汉儿", "撒欢儿", "寻老礼儿", "妥妥儿", "媳妇儿"
}
self.not_erhua = {
"虐儿", "为儿", "护儿", "瞒儿", "救儿", "替儿", "有儿", "一儿", "我儿", "俺儿", "妻儿",
"拐儿", "聋儿", "乞儿", "患儿", "幼儿", "孤儿", "婴儿", "婴幼儿", "连体儿", "脑瘫儿",
"流浪儿", "体弱儿", "混血儿", "蜜雪儿", "舫儿", "祖儿", "美儿", "应采儿", "可儿", "侄儿",
"孙儿", "侄孙儿", "女儿", "男儿", "红孩儿", "花儿", "虫儿", "马儿", "鸟儿", "猪儿", "猫儿",
"狗儿"
}
self.vocab_phones = {}
self.vocab_tones = {}
if phone_vocab_path:
with open(phone_vocab_path, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
self.vocab_phones[phn] = int(id)
if tone_vocab_path:
with open(tone_vocab_path, 'rt') as f:
tone_id = [line.strip().split() for line in f.readlines()]
for tone, id in tone_id:
self.vocab_tones[tone] = int(id)
def _init_pypinyin(self):
large_pinyin.load()
load_phrases_dict(self.phrases_dict)
# 调整字的拼音顺序
load_single_dict({ord(u''): u'de,di4'})
def _get_initials_finals(self, word: str) -> List[List[str]]:
initials = []
finals = []
if self.g2p_model == "pypinyin":
orig_initials = lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.INITIALS)
orig_finals = lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
for c, v in zip(orig_initials, orig_finals):
if re.match(r'i\d', v):
if c in ['z', 'c', 's']:
v = re.sub('i', 'ii', v)
elif c in ['zh', 'ch', 'sh', 'r']:
v = re.sub('i', 'iii', v)
initials.append(c)
finals.append(v)
elif self.g2p_model == "g2pM":
pinyins = self.g2pM_model(word, tone=True, char_split=False)
for pinyin in pinyins:
pinyin = pinyin.replace("u:", "v")
if pinyin in self.pinyin2phone:
initial_final_list = self.pinyin2phone[pinyin].split(" ")
if len(initial_final_list) == 2:
initials.append(initial_final_list[0])
finals.append(initial_final_list[1])
elif len(initial_final_list) == 1:
initials.append('')
finals.append(initial_final_list[1])
else:
# If it's not pinyin (possibly punctuation) or no conversion is required
initials.append(pinyin)
finals.append(pinyin)
return initials, finals
# if merge_sentences, merge all sentences into one phone sequence
def _g2p(self,
sentences: List[str],
merge_sentences: bool=True,
with_erhua: bool=True) -> List[List[str]]:
segments = sentences
phones_list = []
for seg in segments:
phones = []
# Replace all English words in the sentence
seg = re.sub('[a-zA-Z]+', '', seg)
seg_cut = psg.lcut(seg)
initials = []
finals = []
seg_cut = self.tone_modifier.pre_merge_for_modify(seg_cut)
# 为了多音词获得更好的效果,这里采用整句预测
if self.g2p_model == "g2pW":
try:
pinyins = self.g2pW_model(seg)[0]
except Exception:
# g2pW采用模型采用繁体输入如果有cover不了的简体词采用g2pM预测
print("[%s] not in g2pW dict,use g2pM" % seg)
pinyins = self.g2pM_model(seg, tone=True, char_split=False)
pre_word_length = 0
for word, pos in seg_cut:
sub_initials = []
sub_finals = []
now_word_length = pre_word_length + len(word)
if pos == 'eng':
pre_word_length = now_word_length
continue
word_pinyins = pinyins[pre_word_length:now_word_length]
# 矫正发音
word_pinyins = self.corrector.correct_pronunciation(
word, word_pinyins)
for pinyin, char in zip(word_pinyins, word):
if pinyin is None:
pinyin = char
pinyin = pinyin.replace("u:", "v")
if pinyin in self.pinyin2phone:
initial_final_list = self.pinyin2phone[
pinyin].split(" ")
if len(initial_final_list) == 2:
sub_initials.append(initial_final_list[0])
sub_finals.append(initial_final_list[1])
elif len(initial_final_list) == 1:
sub_initials.append('')
sub_finals.append(initial_final_list[1])
else:
# If it's not pinyin (possibly punctuation) or no conversion is required
sub_initials.append(pinyin)
sub_finals.append(pinyin)
pre_word_length = now_word_length
sub_finals = self.tone_modifier.modified_tone(word, pos,
sub_finals)
if with_erhua:
sub_initials, sub_finals = self._merge_erhua(
sub_initials, sub_finals, word, pos)
initials.append(sub_initials)
finals.append(sub_finals)
# assert len(sub_initials) == len(sub_finals) == len(word)
else:
for word, pos in seg_cut:
if pos == 'eng':
continue
sub_initials, sub_finals = self._get_initials_finals(word)
sub_finals = self.tone_modifier.modified_tone(word, pos,
sub_finals)
if with_erhua:
sub_initials, sub_finals = self._merge_erhua(
sub_initials, sub_finals, word, pos)
initials.append(sub_initials)
finals.append(sub_finals)
# assert len(sub_initials) == len(sub_finals) == len(word)
initials = sum(initials, [])
finals = sum(finals, [])
for c, v in zip(initials, finals):
# NOTE: post process for pypinyin outputs
# we discriminate i, ii and iii
if c and c not in self.punc:
phones.append(c)
if c and c in self.punc:
phones.append('sp')
if v and v not in self.punc:
phones.append(v)
phones_list.append(phones)
if merge_sentences:
merge_list = sum(phones_list, [])
# rm the last 'sp' to avoid the noise at the end
# cause in the training data, no 'sp' in the end
if merge_list[-1] == 'sp':
merge_list = merge_list[:-1]
phones_list = []
phones_list.append(merge_list)
return phones_list
def _split_word_to_char(self, words):
res = []
for x in words:
res.append(x)
return res
# if using ssml, have pingyin specified, assign pinyin to words
def _g2p_assign(self,
words: List[str],
pinyin_spec: List[str],
merge_sentences: bool=True) -> List[List[str]]:
phones_list = []
initials = []
finals = []
words = self._split_word_to_char(words[0])
for pinyin, char in zip(pinyin_spec, words):
sub_initials = []
sub_finals = []
pinyin = pinyin.replace("u:", "v")
#self.pinyin2phone: is a dict with all pinyin mapped with sheng_mu yun_mu
if pinyin in self.pinyin2phone:
initial_final_list = self.pinyin2phone[pinyin].split(" ")
if len(initial_final_list) == 2:
sub_initials.append(initial_final_list[0])
sub_finals.append(initial_final_list[1])
elif len(initial_final_list) == 1:
sub_initials.append('')
sub_finals.append(initial_final_list[1])
else:
# If it's not pinyin (possibly punctuation) or no conversion is required
sub_initials.append(pinyin)
sub_finals.append(pinyin)
initials.append(sub_initials)
finals.append(sub_finals)
initials = sum(initials, [])
finals = sum(finals, [])
phones = []
for c, v in zip(initials, finals):
# NOTE: post process for pypinyin outputs
# we discriminate i, ii and iii
if c and c not in self.punc:
phones.append(c)
if c and c in self.punc:
phones.append('sp')
if v and v not in self.punc:
phones.append(v)
phones_list.append(phones)
if merge_sentences:
merge_list = sum(phones_list, [])
# rm the last 'sp' to avoid the noise at the end
# cause in the training data, no 'sp' in the end
if merge_list[-1] == 'sp':
merge_list = merge_list[:-1]
phones_list = []
phones_list.append(merge_list)
return phones_list
def _merge_erhua(self,
initials: List[str],
finals: List[str],
word: str,
pos: str) -> List[List[str]]:
# fix er1
for i, phn in enumerate(finals):
if i == len(finals) - 1 and word[i] == "" and phn == 'er1':
finals[i] = 'er2'
if word not in self.must_erhua and (word in self.not_erhua or
pos in {"a", "j", "nr"}):
return initials, finals
# "……" 等情况直接返回
if len(finals) != len(word):
return initials, finals
assert len(finals) == len(word)
new_initials = []
new_finals = []
for i, phn in enumerate(finals):
if i == len(finals) - 1 and word[i] == "" and phn in {
"er2", "er5"
} and word[-2:] not in self.not_erhua and new_finals:
new_finals[-1] = new_finals[-1][:-1] + "r" + new_finals[-1][-1]
else:
new_finals.append(phn)
new_initials.append(initials[i])
return new_initials, new_finals
def _p2id(self, phonemes: List[str]) -> np.ndarray:
# replace unk phone with sp
phonemes = [
phn if phn in self.vocab_phones else "sp" for phn in phonemes
]
phone_ids = [self.vocab_phones[item] for item in phonemes]
return np.array(phone_ids, np.int64)
def _t2id(self, tones: List[str]) -> np.ndarray:
# replace unk phone with sp
tones = [tone if tone in self.vocab_tones else "0" for tone in tones]
tone_ids = [self.vocab_tones[item] for item in tones]
return np.array(tone_ids, np.int64)
def _get_phone_tone(self, phonemes: List[str],
get_tone_ids: bool=False) -> List[List[str]]:
phones = []
tones = []
if get_tone_ids and self.vocab_tones:
for full_phone in phonemes:
# split tone from finals
match = re.match(r'^(\w+)([012345])$', full_phone)
if match:
phone = match.group(1)
tone = match.group(2)
# if the merged erhua not in the vocab
# assume that the input is ['iaor3'] and 'iaor' not in self.vocab_phones, we split 'iaor' into ['iao','er']
# and the tones accordingly change from ['3'] to ['3','2'], while '2' is the tone of 'er2'
if len(phone) >= 2 and phone != "er" and phone[
-1] == 'r' and phone not in self.vocab_phones and phone[:
-1] in self.vocab_phones:
phones.append(phone[:-1])
phones.append("er")
tones.append(tone)
tones.append("2")
else:
phones.append(phone)
tones.append(tone)
else:
phones.append(full_phone)
tones.append('0')
else:
for phone in phonemes:
# if the merged erhua not in the vocab
# assume that the input is ['iaor3'] and 'iaor' not in self.vocab_phones, change ['iaor3'] to ['iao3','er2']
if len(phone) >= 3 and phone[:-1] != "er" and phone[
-2] == 'r' and phone not in self.vocab_phones and (
phone[:-2] + phone[-1]) in self.vocab_phones:
phones.append((phone[:-2] + phone[-1]))
phones.append("er2")
else:
phones.append(phone)
return phones, tones
def get_phonemes(self,
sentence: str,
merge_sentences: bool=True,
with_erhua: bool=True,
robot: bool=False,
print_info: bool=False) -> List[List[str]]:
sentences = self.text_normalizer.normalize(sentence)
phonemes = self._g2p(
sentences, merge_sentences=merge_sentences, with_erhua=with_erhua)
# change all tones to `1`
if robot:
new_phonemes = []
for sentence in phonemes:
new_sentence = []
for item in sentence:
# `er` only have tone `2`
if item[-1] in "12345" and item != "er2":
item = item[:-1] + "1"
new_sentence.append(item)
new_phonemes.append(new_sentence)
phonemes = new_phonemes
if print_info:
print("----------------------------")
print("text norm results:")
print(sentences)
print("----------------------------")
print("g2p results:")
print(phonemes)
print("----------------------------")
return phonemes
#@an added for ssml pinyin
def get_phonemes_ssml(self,
ssml_inputs: list,
merge_sentences: bool=True,
with_erhua: bool=True,
robot: bool=False,
print_info: bool=False) -> List[List[str]]:
all_phonemes = []
for word_pinyin_item in ssml_inputs:
phonemes = []
sentence, pinyin_spec = itemgetter(0, 1)(word_pinyin_item)
sentences = self.text_normalizer.normalize(sentence)
if len(pinyin_spec) == 0:
phonemes = self._g2p(
sentences,
merge_sentences=merge_sentences,
with_erhua=with_erhua)
else:
# phonemes should be pinyin_spec
phonemes = self._g2p_assign(
sentences, pinyin_spec, merge_sentences=merge_sentences)
all_phonemes = all_phonemes + phonemes
if robot:
new_phonemes = []
for sentence in all_phonemes:
new_sentence = []
for item in sentence:
# `er` only have tone `2`
if item[-1] in "12345" and item != "er2":
item = item[:-1] + "1"
new_sentence.append(item)
new_phonemes.append(new_sentence)
all_phonemes = new_phonemes
if print_info:
print("----------------------------")
print("text norm results:")
print(sentences)
print("----------------------------")
print("g2p results:")
print(all_phonemes[0])
print("----------------------------")
return [sum(all_phonemes, [])]
def get_input_ids(self,
sentence: str,
merge_sentences: bool=True,
get_tone_ids: bool=False,
robot: bool=False,
print_info: bool=False,
add_blank: bool=False,
blank_token: str="<pad>",
to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]:
phonemes = self.get_phonemes(
sentence,
merge_sentences=merge_sentences,
print_info=print_info,
robot=robot)
result = {}
phones = []
tones = []
temp_phone_ids = []
temp_tone_ids = []
for part_phonemes in phonemes:
phones, tones = self._get_phone_tone(
part_phonemes, get_tone_ids=get_tone_ids)
if add_blank:
phones = insert_after_character(phones, blank_token)
if tones:
tone_ids = self._t2id(tones)
if to_tensor:
tone_ids = paddle.to_tensor(tone_ids)
temp_tone_ids.append(tone_ids)
if phones:
phone_ids = self._p2id(phones)
# if use paddle.to_tensor() in onnxruntime, the first time will be too low
if to_tensor:
phone_ids = paddle.to_tensor(phone_ids)
temp_phone_ids.append(phone_ids)
if temp_tone_ids:
result["tone_ids"] = temp_tone_ids
if temp_phone_ids:
result["phone_ids"] = temp_phone_ids
return result
# @an added for ssml
def get_input_ids_ssml(
self,
sentence: str,
merge_sentences: bool=True,
get_tone_ids: bool=False,
robot: bool=False,
print_info: bool=False,
add_blank: bool=False,
blank_token: str="<pad>",
to_tensor: bool=True) -> Dict[str, List[paddle.Tensor]]:
l_inputs = MixTextProcessor.get_pinyin_split(sentence)
phonemes = self.get_phonemes_ssml(
l_inputs,
merge_sentences=merge_sentences,
print_info=print_info,
robot=robot)
result = {}
phones = []
tones = []
temp_phone_ids = []
temp_tone_ids = []
for part_phonemes in phonemes:
phones, tones = self._get_phone_tone(
part_phonemes, get_tone_ids=get_tone_ids)
if add_blank:
phones = insert_after_character(phones, blank_token)
if tones:
tone_ids = self._t2id(tones)
if to_tensor:
tone_ids = paddle.to_tensor(tone_ids)
temp_tone_ids.append(tone_ids)
if phones:
phone_ids = self._p2id(phones)
# if use paddle.to_tensor() in onnxruntime, the first time will be too low
if to_tensor:
phone_ids = paddle.to_tensor(phone_ids)
temp_phone_ids.append(phone_ids)
if temp_tone_ids:
result["tone_ids"] = temp_tone_ids
if temp_phone_ids:
result["phone_ids"] = temp_phone_ids
return result