|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
# You may obtain a copy of the License at
|
|
|
#
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
#
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
# See the License for the specific language governing permissions and
|
|
|
import math
|
|
|
from typing import List
|
|
|
from typing import Tuple
|
|
|
from typing import Union
|
|
|
|
|
|
import paddle
|
|
|
from paddle import Tensor
|
|
|
|
|
|
__all__ = [
|
|
|
'get_window',
|
|
|
]
|
|
|
|
|
|
|
|
|
def _cat(a: List[Tensor], data_type: str) -> Tensor:
|
|
|
l = [paddle.to_tensor(_a, data_type) for _a in a]
|
|
|
return paddle.concat(l)
|
|
|
|
|
|
|
|
|
def _acosh(x: Union[Tensor, float]) -> Tensor:
|
|
|
if isinstance(x, float):
|
|
|
return math.log(x + math.sqrt(x**2 - 1))
|
|
|
return paddle.log(x + paddle.sqrt(paddle.square(x) - 1))
|
|
|
|
|
|
|
|
|
def _extend(M: int, sym: bool) -> bool:
|
|
|
"""Extend window by 1 sample if needed for DFT-even symmetry"""
|
|
|
if not sym:
|
|
|
return M + 1, True
|
|
|
else:
|
|
|
return M, False
|
|
|
|
|
|
|
|
|
def _len_guards(M: int) -> bool:
|
|
|
"""Handle small or incorrect window lengths"""
|
|
|
if int(M) != M or M < 0:
|
|
|
raise ValueError('Window length M must be a non-negative integer')
|
|
|
|
|
|
return M <= 1
|
|
|
|
|
|
|
|
|
def _truncate(w: Tensor, needed: bool) -> Tensor:
|
|
|
"""Truncate window by 1 sample if needed for DFT-even symmetry"""
|
|
|
if needed:
|
|
|
return w[:-1]
|
|
|
else:
|
|
|
return w
|
|
|
|
|
|
|
|
|
def general_gaussian(M: int, p, sig, sym: bool=True,
|
|
|
dtype: str='float64') -> Tensor:
|
|
|
"""Compute a window with a generalized Gaussian shape.
|
|
|
This function is consistent with scipy.signal.windows.general_gaussian().
|
|
|
"""
|
|
|
if _len_guards(M):
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
M, needs_trunc = _extend(M, sym)
|
|
|
|
|
|
n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
|
|
|
w = paddle.exp(-0.5 * paddle.abs(n / sig)**(2 * p))
|
|
|
|
|
|
return _truncate(w, needs_trunc)
|
|
|
|
|
|
|
|
|
def general_hamming(M: int, alpha: float, sym: bool=True,
|
|
|
dtype: str='float64') -> Tensor:
|
|
|
"""Compute a generalized Hamming window.
|
|
|
This function is consistent with scipy.signal.windows.general_hamming()
|
|
|
"""
|
|
|
return general_cosine(M, [alpha, 1. - alpha], sym, dtype=dtype)
|
|
|
|
|
|
|
|
|
def taylor(M: int,
|
|
|
nbar=4,
|
|
|
sll=30,
|
|
|
norm=True,
|
|
|
sym: bool=True,
|
|
|
dtype: str='float64') -> Tensor:
|
|
|
"""Compute a Taylor window.
|
|
|
The Taylor window taper function approximates the Dolph-Chebyshev window's
|
|
|
constant sidelobe level for a parameterized number of near-in sidelobes.
|
|
|
Parameters:
|
|
|
M(int): window size
|
|
|
nbar, sil, norm: the window-specific parameter.
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
if _len_guards(M):
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
M, needs_trunc = _extend(M, sym)
|
|
|
# Original text uses a negative sidelobe level parameter and then negates
|
|
|
# it in the calculation of B. To keep consistent with other methods we
|
|
|
# assume the sidelobe level parameter to be positive.
|
|
|
B = 10**(sll / 20)
|
|
|
A = _acosh(B) / math.pi
|
|
|
s2 = nbar**2 / (A**2 + (nbar - 0.5)**2)
|
|
|
ma = paddle.arange(1, nbar, dtype=dtype)
|
|
|
|
|
|
Fm = paddle.empty((nbar - 1, ), dtype=dtype)
|
|
|
signs = paddle.empty_like(ma)
|
|
|
signs[::2] = 1
|
|
|
signs[1::2] = -1
|
|
|
m2 = ma * ma
|
|
|
for mi in range(len(ma)):
|
|
|
numer = signs[mi] * paddle.prod(1 - m2[mi] / s2 / (A**2 + (ma - 0.5)**2
|
|
|
))
|
|
|
if mi == 0:
|
|
|
denom = 2 * paddle.prod(1 - m2[mi] / m2[mi + 1:])
|
|
|
elif mi == len(ma) - 1:
|
|
|
denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi])
|
|
|
else:
|
|
|
denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi]) * paddle.prod(1 - m2[
|
|
|
mi] / m2[mi + 1:])
|
|
|
|
|
|
Fm[mi] = numer / denom
|
|
|
|
|
|
def W(n):
|
|
|
return 1 + 2 * paddle.matmul(
|
|
|
Fm.unsqueeze(0),
|
|
|
paddle.cos(2 * math.pi * ma.unsqueeze(1) * (n - M / 2. + 0.5) / M))
|
|
|
|
|
|
w = W(paddle.arange(0, M, dtype=dtype))
|
|
|
|
|
|
# normalize (Note that this is not described in the original text [1])
|
|
|
if norm:
|
|
|
scale = 1.0 / W((M - 1) / 2)
|
|
|
w *= scale
|
|
|
w = w.squeeze()
|
|
|
return _truncate(w, needs_trunc)
|
|
|
|
|
|
|
|
|
def general_cosine(M: int, a: float, sym: bool=True,
|
|
|
dtype: str='float64') -> Tensor:
|
|
|
"""Compute a generic weighted sum of cosine terms window.
|
|
|
This function is consistent with scipy.signal.windows.general_cosine().
|
|
|
"""
|
|
|
if _len_guards(M):
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
M, needs_trunc = _extend(M, sym)
|
|
|
fac = paddle.linspace(-math.pi, math.pi, M, dtype=dtype)
|
|
|
w = paddle.zeros((M, ), dtype=dtype)
|
|
|
for k in range(len(a)):
|
|
|
w += a[k] * paddle.cos(k * fac)
|
|
|
return _truncate(w, needs_trunc)
|
|
|
|
|
|
|
|
|
def hamming(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
|
|
|
"""Compute a Hamming window.
|
|
|
The Hamming window is a taper formed by using a raised cosine with
|
|
|
non-zero endpoints, optimized to minimize the nearest side lobe.
|
|
|
Parameters:
|
|
|
M(int): window size
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
return general_hamming(M, 0.54, sym, dtype=dtype)
|
|
|
|
|
|
|
|
|
def hann(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
|
|
|
"""Compute a Hann window.
|
|
|
The Hann window is a taper formed by using a raised cosine or sine-squared
|
|
|
with ends that touch zero.
|
|
|
Parameters:
|
|
|
M(int): window size
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
return general_hamming(M, 0.5, sym, dtype=dtype)
|
|
|
|
|
|
|
|
|
def tukey(M: int, alpha=0.5, sym: bool=True, dtype: str='float64') -> Tensor:
|
|
|
"""Compute a Tukey window.
|
|
|
The Tukey window is also known as a tapered cosine window.
|
|
|
Parameters:
|
|
|
M(int): window size
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
if _len_guards(M):
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
|
|
|
if alpha <= 0:
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
elif alpha >= 1.0:
|
|
|
return hann(M, sym=sym)
|
|
|
|
|
|
M, needs_trunc = _extend(M, sym)
|
|
|
|
|
|
n = paddle.arange(0, M, dtype=dtype)
|
|
|
width = int(alpha * (M - 1) / 2.0)
|
|
|
n1 = n[0:width + 1]
|
|
|
n2 = n[width + 1:M - width - 1]
|
|
|
n3 = n[M - width - 1:]
|
|
|
|
|
|
w1 = 0.5 * (1 + paddle.cos(math.pi * (-1 + 2.0 * n1 / alpha / (M - 1))))
|
|
|
w2 = paddle.ones(n2.shape, dtype=dtype)
|
|
|
w3 = 0.5 * (1 + paddle.cos(math.pi * (-2.0 / alpha + 1 + 2.0 * n3 / alpha /
|
|
|
(M - 1))))
|
|
|
w = paddle.concat([w1, w2, w3])
|
|
|
|
|
|
return _truncate(w, needs_trunc)
|
|
|
|
|
|
|
|
|
def kaiser(M: int, beta: float, sym: bool=True, dtype: str='float64') -> Tensor:
|
|
|
"""Compute a Kaiser window.
|
|
|
The Kaiser window is a taper formed by using a Bessel function.
|
|
|
Parameters:
|
|
|
M(int): window size.
|
|
|
beta(float): the window-specific parameter.
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
def gaussian(M: int, std: float, sym: bool=True,
|
|
|
dtype: str='float64') -> Tensor:
|
|
|
"""Compute a Gaussian window.
|
|
|
The Gaussian widows has a Gaussian shape defined by the standard deviation(std).
|
|
|
Parameters:
|
|
|
M(int): window size.
|
|
|
std(float): the window-specific parameter.
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
if _len_guards(M):
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
M, needs_trunc = _extend(M, sym)
|
|
|
|
|
|
n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
|
|
|
sig2 = 2 * std * std
|
|
|
w = paddle.exp(-n**2 / sig2)
|
|
|
|
|
|
return _truncate(w, needs_trunc)
|
|
|
|
|
|
|
|
|
def exponential(M: int,
|
|
|
center=None,
|
|
|
tau=1.,
|
|
|
sym: bool=True,
|
|
|
dtype: str='float64') -> Tensor:
|
|
|
"""Compute an exponential (or Poisson) window.
|
|
|
Parameters:
|
|
|
M(int): window size.
|
|
|
tau(float): the window-specific parameter.
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
if sym and center is not None:
|
|
|
raise ValueError("If sym==True, center must be None.")
|
|
|
if _len_guards(M):
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
M, needs_trunc = _extend(M, sym)
|
|
|
|
|
|
if center is None:
|
|
|
center = (M - 1) / 2
|
|
|
|
|
|
n = paddle.arange(0, M, dtype=dtype)
|
|
|
w = paddle.exp(-paddle.abs(n - center) / tau)
|
|
|
|
|
|
return _truncate(w, needs_trunc)
|
|
|
|
|
|
|
|
|
def triang(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
|
|
|
"""Compute a triangular window.
|
|
|
Parameters:
|
|
|
M(int): window size.
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
if _len_guards(M):
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
M, needs_trunc = _extend(M, sym)
|
|
|
|
|
|
n = paddle.arange(1, (M + 1) // 2 + 1, dtype=dtype)
|
|
|
if M % 2 == 0:
|
|
|
w = (2 * n - 1.0) / M
|
|
|
w = paddle.concat([w, w[::-1]])
|
|
|
else:
|
|
|
w = 2 * n / (M + 1.0)
|
|
|
w = paddle.concat([w, w[-2::-1]])
|
|
|
|
|
|
return _truncate(w, needs_trunc)
|
|
|
|
|
|
|
|
|
def bohman(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
|
|
|
"""Compute a Bohman window.
|
|
|
The Bohman window is the autocorrelation of a cosine window.
|
|
|
Parameters:
|
|
|
M(int): window size.
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
if _len_guards(M):
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
M, needs_trunc = _extend(M, sym)
|
|
|
|
|
|
fac = paddle.abs(paddle.linspace(-1, 1, M, dtype=dtype)[1:-1])
|
|
|
w = (1 - fac) * paddle.cos(math.pi * fac) + 1.0 / math.pi * paddle.sin(
|
|
|
math.pi * fac)
|
|
|
w = _cat([0, w, 0], dtype)
|
|
|
|
|
|
return _truncate(w, needs_trunc)
|
|
|
|
|
|
|
|
|
def blackman(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
|
|
|
"""Compute a Blackman window.
|
|
|
The Blackman window is a taper formed by using the first three terms of
|
|
|
a summation of cosines. It was designed to have close to the minimal
|
|
|
leakage possible. It is close to optimal, only slightly worse than a
|
|
|
Kaiser window.
|
|
|
Parameters:
|
|
|
M(int): window size.
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
return general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype)
|
|
|
|
|
|
|
|
|
def cosine(M: int, sym: bool=True, dtype: str='float64') -> Tensor:
|
|
|
"""Compute a window with a simple cosine shape.
|
|
|
Parameters:
|
|
|
M(int): window size.
|
|
|
sym(bool):whether to return symmetric window.
|
|
|
The default value is True
|
|
|
dtype(str): the datatype of returned tensor.
|
|
|
Returns:
|
|
|
Tensor: the window tensor
|
|
|
"""
|
|
|
if _len_guards(M):
|
|
|
return paddle.ones((M, ), dtype=dtype)
|
|
|
M, needs_trunc = _extend(M, sym)
|
|
|
w = paddle.sin(math.pi / M * (paddle.arange(0, M, dtype=dtype) + .5))
|
|
|
|
|
|
return _truncate(w, needs_trunc)
|
|
|
|
|
|
|
|
|
def get_window(window: Union[str, Tuple[str, float]],
|
|
|
win_length: int,
|
|
|
fftbins: bool=True,
|
|
|
dtype: str='float64') -> Tensor:
|
|
|
"""Return a window of a given length and type.
|
|
|
Parameters:
|
|
|
window(str|(str,float)): the type of window to create.
|
|
|
win_length(int): the number of samples in the window.
|
|
|
fftbins(bool): If True, create a "periodic" window. Otherwise,
|
|
|
create a "symmetric" window, for use in filter design.
|
|
|
Returns:
|
|
|
The window represented as a tensor.
|
|
|
"""
|
|
|
sym = not fftbins
|
|
|
|
|
|
args = ()
|
|
|
if isinstance(window, tuple):
|
|
|
winstr = window[0]
|
|
|
if len(window) > 1:
|
|
|
args = window[1:]
|
|
|
elif isinstance(window, str):
|
|
|
if window in ['gaussian', 'exponential']:
|
|
|
raise ValueError("The '" + window + "' window needs one or "
|
|
|
"more parameters -- pass a tuple.")
|
|
|
else:
|
|
|
winstr = window
|
|
|
else:
|
|
|
raise ValueError("%s as window type is not supported." %
|
|
|
str(type(window)))
|
|
|
|
|
|
try:
|
|
|
winfunc = eval(winstr)
|
|
|
except KeyError as e:
|
|
|
raise ValueError("Unknown window type.") from e
|
|
|
|
|
|
params = (win_length, ) + args
|
|
|
kwargs = {'sym': sym}
|
|
|
return winfunc(*params, dtype=dtype, **kwargs)
|