You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/training/trainer.py

513 lines
18 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
from collections import OrderedDict
from contextlib import contextmanager
from pathlib import Path
import paddle
from paddle import distributed as dist
world_size = dist.get_world_size()
if world_size > 1:
dist.init_parallel_env()
from visualdl import LogWriter
from paddlespeech.s2t.training.reporter import ObsScope
from paddlespeech.s2t.training.reporter import report
from paddlespeech.s2t.training.timer import Timer
from paddlespeech.s2t.utils import mp_tools
from paddlespeech.s2t.utils import profiler
from paddlespeech.s2t.utils.checkpoint import Checkpoint
from paddlespeech.s2t.utils.log import Log
from paddlespeech.s2t.utils.utility import all_version
from paddlespeech.s2t.utils.utility import seed_all
from paddlespeech.s2t.utils.utility import UpdateConfig
__all__ = ["Trainer"]
logger = Log(__name__).getlog()
class Trainer():
"""
An experiment template in order to structure the training code and take
care of saving, loading, logging, visualization stuffs. It's intended to
be flexible and simple.
So it only handles output directory (create directory for the output,
create a checkpoint directory, dump the config in use and create
visualizer and logger) in a standard way without enforcing any
input-output protocols to the model and dataloader. It leaves the main
part for the user to implement their own (setup the model, criterion,
optimizer, define a training step, define a validation function and
customize all the text and visual logs).
It does not save too much boilerplate code. The users still have to write
the forward/backward/update mannually, but they are free to add
non-standard behaviors if needed.
We have some conventions to follow.
1. Experiment should have ``model``, ``optimizer``, ``train_loader`` and
``valid_loader``, ``config`` and ``args`` attributes.
2. The config should have a ``training`` field, which has
``valid_interval``, ``save_interval`` and ``max_iteration`` keys. It is
used as the trigger to invoke validation, checkpointing and stop of the
experiment.
3. There are four methods, namely ``train_batch``, ``valid``,
``setup_model`` and ``setup_dataloader`` that should be implemented.
Feel free to add/overwrite other methods and standalone functions if you
need.
Parameters
----------
config: yacs.config.CfgNode
The configuration used for the experiment.
args: argparse.Namespace
The parsed command line arguments.
Examples
--------
>>> def main_sp(config, args):
>>> exp = Trainer(config, args)
>>> exp.setup()
>>> exp.run()
>>>
>>> config = get_cfg_defaults()
>>> parser = default_argument_parser()
>>> args = parser.parse_args()
>>> if args.config:
>>> config.merge_from_file(args.config)
>>> if args.opts:
>>> config.merge_from_list(args.opts)
>>> config.freeze()
>>>
>>> if args.ngpu > 1:
>>> dist.spawn(main_sp, args=(config, args), nprocs=args.ngpu)
>>> else:
>>> main_sp(config, args)
"""
def __init__(self, config, args):
self.config = config
self.args = args
self.optimizer = None
self.visualizer = None
self.output_dir = None
self.checkpoint_dir = None
self.iteration = 0
self.epoch = 0
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
self._train = True
self.scaler = None
# print deps version
all_version()
logger.info(f"Rank: {self.rank}/{self.world_size}")
# set device
if self.args.ngpu == 0:
if self.args.nxpu == 0:
paddle.set_device('cpu')
else:
paddle.set_device('xpu')
elif self.args.ngpu > 0:
paddle.set_device("gpu")
else:
raise Exception("invalid device")
self.checkpoint = Checkpoint(
kbest_n=self.config.checkpoint.kbest_n,
latest_n=self.config.checkpoint.latest_n)
# set random seed if needed
if args.seed:
seed_all(args.seed)
logger.info(f"Set seed {args.seed}")
# profiler and benchmark options
if hasattr(self.args,
"benchmark_batch_size") and self.args.benchmark_batch_size:
with UpdateConfig(self.config):
self.config.batch_size = self.args.benchmark_batch_size
self.config.log_interval = 1
logger.info(
f"Benchmark reset batch-size: {self.args.benchmark_batch_size}")
@property
def train(self):
return self._train
@contextmanager
def eval(self):
self._train = False
yield
self._train = True
def setup(self):
"""Setup the experiment.
"""
self.setup_output_dir()
self.dump_config()
self.setup_visualizer()
self.setup_dataloader()
self.setup_model()
self.iteration = 0
self.epoch = 0
@property
def parallel(self):
"""A flag indicating whether the experiment should run with
multiprocessing.
"""
return self.args.ngpu > 1
@mp_tools.rank_zero_only
def save(self, tag=None, infos: dict=None):
"""Save checkpoint (model parameters and optimizer states).
Args:
tag (int or str, optional): None for step, else using tag, e.g epoch. Defaults to None.
infos (dict, optional): meta data to save. Defaults to None.
"""
infos = infos if infos else dict()
infos.update({
"step": self.iteration,
"epoch": self.epoch,
"lr": self.optimizer.get_lr(),
})
if self.scaler:
scaler_path = os.path.join(self.checkpoint_dir,
"{}".format(self.epoch)) + '.scaler'
paddle.save(self.scaler.state_dict(), scaler_path)
self.checkpoint.save_parameters(self.checkpoint_dir, self.iteration
if tag is None else tag, self.model,
self.optimizer, infos)
def resume_or_scratch(self):
"""Resume from latest checkpoint at checkpoints in the output
directory or load a specified checkpoint.
If ``args.checkpoint_path`` is not None, load the checkpoint, else
resume training.
"""
scratch = None
infos = self.checkpoint.load_latest_parameters(
self.model,
self.optimizer,
checkpoint_dir=self.checkpoint_dir,
checkpoint_path=self.args.checkpoint_path)
if infos:
# just restore ckpt
# lr will resotre from optimizer ckpt
self.iteration = infos["step"]
self.epoch = infos["epoch"]
scaler_path = os.path.join(self.checkpoint_dir,
"{}".format(self.epoch)) + '.scaler'
if os.path.exists(scaler_path):
scaler_state_dict = paddle.load(scaler_path)
self.scaler.load_state_dict(scaler_state_dict)
scratch = False
logger.info(
f"Restore ckpt: epoch {self.epoch }, step {self.iteration}!")
else:
self.iteration = 0
self.epoch = 0
scratch = True
logger.info("Init from scratch!")
return scratch
def maybe_batch_sampler_step(self):
""" batch_sampler seed by epoch """
if hasattr(self.train_loader, "batch_sampler"):
batch_sampler = self.train_loader.batch_sampler
if isinstance(batch_sampler, paddle.io.DistributedBatchSampler):
logger.debug(
f"train_loader.batch_sample.set_epoch: {self.epoch}")
batch_sampler.set_epoch(self.epoch)
def before_train(self):
from_scratch = self.resume_or_scratch()
if from_scratch:
# scratch: save init model, i.e. 0 epoch
self.save(tag='init', infos=None)
else:
# resume: train next_epoch and next_iteration
self.epoch += 1
self.iteration += 1
logger.info(
f"Resume train: epoch {self.epoch }, step {self.iteration}!")
self.maybe_batch_sampler_step()
def new_epoch(self):
"""Reset the train loader seed and increment `epoch`.
"""
# `iteration` increased by train step
self.epoch += 1
self.maybe_batch_sampler_step()
def after_train_batch(self):
if self.args.benchmark_max_step:
profiler.add_profiler_step(self.args.profiler_options)
if self.args.benchmark_max_step and self.iteration > self.args.benchmark_max_step:
logger.info(
f"Reach benchmark-max-step: {self.args.benchmark_max_step}")
sys.exit(0)
def do_train(self):
"""The training process control by epoch."""
self.before_train()
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
while self.epoch < self.config.n_epoch:
with Timer("Epoch-Train Time Cost: {}"):
self.model.train()
try:
data_start_time = time.time()
for batch_index, batch in enumerate(self.train_loader):
dataload_time = time.time() - data_start_time
msg = "Train:"
observation = OrderedDict()
with ObsScope(observation):
report("Rank", dist.get_rank())
report("epoch", self.epoch)
report('step', self.iteration)
report("lr", self.lr_scheduler())
self.train_batch(batch_index, batch, msg)
self.after_train_batch()
report('iter', batch_index + 1)
report('total', len(self.train_loader))
report('reader_cost', dataload_time)
observation['batch_cost'] = observation[
'reader_cost'] + observation['step_cost']
observation['samples'] = observation['batch_size']
observation['ips samples/s'] = observation[
'batch_size'] / observation['batch_cost']
for k, v in observation.items():
msg += f" {k}: "
msg += f"{v:>.8f}" if isinstance(v,
float) else f"{v}"
msg += ","
msg = msg[:-1] # remove the last ","
if (batch_index + 1) % self.config.log_interval == 0:
logger.info(msg)
data_start_time = time.time()
except Exception as e:
logger.error(e)
raise e
with Timer("Eval Time Cost: {}"):
total_loss, num_seen_utts = self.valid()
if dist.get_world_size() > 1:
num_seen_utts = paddle.to_tensor(num_seen_utts)
# the default operator in all_reduce function is sum.
dist.all_reduce(num_seen_utts)
total_loss = paddle.to_tensor(total_loss)
dist.all_reduce(total_loss)
cv_loss = total_loss / num_seen_utts
cv_loss = float(cv_loss)
else:
cv_loss = total_loss / num_seen_utts
logger.info(
'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
if self.visualizer:
self.visualizer.add_scalar(
tag='eval/cv_loss', value=cv_loss, step=self.epoch)
self.visualizer.add_scalar(
tag='eval/lr', value=self.lr_scheduler(), step=self.epoch)
# step lr every epoch
self.lr_scheduler.step()
# after epoch
self.save(tag=self.epoch, infos={'val_loss': cv_loss})
self.new_epoch()
def run(self):
"""The routine of the experiment after setup. This method is intended
to be used by the user.
"""
try:
with Timer("Training Done: {}"):
self.do_train()
except KeyboardInterrupt:
exit(-1)
finally:
self.destory()
def restore(self):
"""Resume from latest checkpoint at checkpoints in the output
directory or load a specified checkpoint.
If ``args.checkpoint_path`` is not None, load the checkpoint, else
resume training.
"""
assert self.args.checkpoint_path
infos = self.checkpoint.load_latest_parameters(
self.model, checkpoint_path=self.args.checkpoint_path)
return infos
def run_test(self):
"""Do Test/Decode"""
try:
with Timer("Test/Decode Done: {}"):
with self.eval():
self.restore()
self.test()
except KeyboardInterrupt:
exit(-1)
def run_export(self):
"""Do Model Export"""
try:
with Timer("Export Done: {}"):
with self.eval():
self.restore()
self.export()
except KeyboardInterrupt:
exit(-1)
def run_align(self):
"""Do CTC alignment"""
try:
with Timer("Align Done: {}"):
with self.eval():
self.restore()
self.align()
except KeyboardInterrupt:
sys.exit(-1)
def setup_output_dir(self):
"""Create a directory used for output.
"""
if self.args.output:
output_dir = Path(self.args.output).expanduser()
elif self.args.checkpoint_path:
output_dir = Path(
self.args.checkpoint_path).expanduser().parent.parent
elif self.args.export_path:
output_dir = Path(self.args.export_path).expanduser().parent.parent
self.output_dir = output_dir
self.output_dir.mkdir(parents=True, exist_ok=True)
self.checkpoint_dir = self.output_dir / "checkpoints"
self.checkpoint_dir.mkdir(parents=True, exist_ok=True)
self.log_dir = output_dir / "log"
self.log_dir.mkdir(parents=True, exist_ok=True)
self.test_dir = output_dir / "test"
self.test_dir.mkdir(parents=True, exist_ok=True)
self.decode_dir = output_dir / "decode"
self.decode_dir.mkdir(parents=True, exist_ok=True)
self.export_dir = output_dir / "export"
self.export_dir.mkdir(parents=True, exist_ok=True)
self.visual_dir = output_dir / "visual"
self.visual_dir.mkdir(parents=True, exist_ok=True)
self.config_dir = output_dir / "conf"
self.config_dir.mkdir(parents=True, exist_ok=True)
@mp_tools.rank_zero_only
def destory(self):
"""Close visualizer to avoid hanging after training"""
# https://github.com/pytorch/fairseq/issues/2357
if self.visualizer:
self.visualizer.close()
@mp_tools.rank_zero_only
def setup_visualizer(self):
"""Initialize a visualizer to log the experiment.
The visual log is saved in the output directory.
Notes
------
Only the main process has a visualizer with it. Use multiple
visualizers in multiprocess to write to a same log file may cause
unexpected behaviors.
"""
# visualizer
visualizer = LogWriter(logdir=str(self.visual_dir))
self.visualizer = visualizer
@mp_tools.rank_zero_only
def dump_config(self):
"""Save the configuration used for this experiment.
It is saved in to ``config.yaml`` in the output directory at the
beginning of the experiment.
"""
config_file = self.config_dir / "config.yaml"
if self.train and config_file.exists():
time_stamp = time.strftime("%Y_%m_%d_%H_%M_%s", time.gmtime())
target_path = self.config_dir / ".".join(
[time_stamp, "config.yaml"])
config_file.rename(target_path)
with open(config_file, 'wt') as f:
print(self.config, file=f)
def train_batch(self):
"""The training loop. A subclass should implement this method.
"""
raise NotImplementedError("train_batch should be implemented.")
@paddle.no_grad()
def valid(self):
"""The validation. A subclass should implement this method.
"""
raise NotImplementedError("valid should be implemented.")
@paddle.no_grad()
def test(self):
"""The test. A subclass should implement this method in Tester.
"""
raise NotImplementedError("test should be implemented.")
@paddle.no_grad()
def export(self):
"""The test. A subclass should implement this method in Tester.
"""
raise NotImplementedError("export should be implemented.")
@paddle.no_grad()
def align(self):
"""The align. A subclass should implement this method in Tester.
"""
raise NotImplementedError("align should be implemented.")
def setup_model(self):
"""Setup model, criterion and optimizer, etc. A subclass should
implement this method.
"""
raise NotImplementedError("setup_model should be implemented.")
def setup_dataloader(self):
"""Setup training dataloader and validation dataloader. A subclass
should implement this method.
"""
raise NotImplementedError("setup_dataloader should be implemented.")