You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/ernie_sat/ernie_sat_updater.py

159 lines
5.7 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from pathlib import Path
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.nn import Layer
from paddle.optimizer import Optimizer
from paddle.optimizer.lr import LRScheduler
from paddlespeech.t2s.modules.losses import MLMLoss
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
from paddlespeech.t2s.training.reporter import report
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
logging.basicConfig(
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='[%Y-%m-%d %H:%M:%S]')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class ErnieSATUpdater(StandardUpdater):
def __init__(self,
model: Layer,
optimizer: Optimizer,
scheduler: LRScheduler,
dataloader: DataLoader,
init_state=None,
text_masking: bool=False,
odim: int=80,
vocab_size: int=100,
output_dir: Path=None):
super().__init__(model, optimizer, dataloader, init_state=None)
self.scheduler = scheduler
self.criterion = MLMLoss(
text_masking=text_masking, odim=odim, vocab_size=vocab_size)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def update_core(self, batch):
self.msg = "Rank: {}, ".format(dist.get_rank())
losses_dict = {}
before_outs, after_outs, text_outs = self.model(
speech=batch["speech"],
text=batch["text"],
masked_pos=batch["masked_pos"],
speech_mask=batch["speech_mask"],
text_mask=batch["text_mask"],
speech_seg_pos=batch["speech_seg_pos"],
text_seg_pos=batch["text_seg_pos"])
mlm_loss, text_mlm_loss = self.criterion(
speech=batch["speech"],
before_outs=before_outs,
after_outs=after_outs,
masked_pos=batch["masked_pos"],
text=batch["text"],
# maybe None
text_outs=text_outs,
# maybe None
text_masked_pos=batch["text_masked_pos"])
loss = mlm_loss + text_mlm_loss if text_mlm_loss is not None else mlm_loss
self.optimizer.clear_grad()
loss.backward()
self.optimizer.step()
self.scheduler.step()
scheduler_msg = 'lr: {}'.format(self.scheduler.last_lr)
report("train/loss", float(loss))
report("train/mlm_loss", float(mlm_loss))
if text_mlm_loss is not None:
report("train/text_mlm_loss", float(text_mlm_loss))
losses_dict["text_mlm_loss"] = float(text_mlm_loss)
losses_dict["mlm_loss"] = float(mlm_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
self.msg += ', ' + scheduler_msg
class ErnieSATEvaluator(StandardEvaluator):
def __init__(self,
model: Layer,
dataloader: DataLoader,
text_masking: bool=False,
odim: int=80,
vocab_size: int=100,
output_dir: Path=None):
super().__init__(model, dataloader)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
self.criterion = MLMLoss(
text_masking=text_masking, odim=odim, vocab_size=vocab_size)
def evaluate_core(self, batch):
self.msg = "Evaluate: "
losses_dict = {}
before_outs, after_outs, text_outs = self.model(
speech=batch["speech"],
text=batch["text"],
masked_pos=batch["masked_pos"],
speech_mask=batch["speech_mask"],
text_mask=batch["text_mask"],
speech_seg_pos=batch["speech_seg_pos"],
text_seg_pos=batch["text_seg_pos"])
mlm_loss, text_mlm_loss = self.criterion(
speech=batch["speech"],
before_outs=before_outs,
after_outs=after_outs,
masked_pos=batch["masked_pos"],
text=batch["text"],
# maybe None
text_outs=text_outs,
# maybe None
text_masked_pos=batch["text_masked_pos"])
loss = mlm_loss + text_mlm_loss if text_mlm_loss is not None else mlm_loss
report("eval/loss", float(loss))
report("eval/mlm_loss", float(mlm_loss))
if text_mlm_loss is not None:
report("eval/text_mlm_loss", float(text_mlm_loss))
losses_dict["text_mlm_loss"] = float(text_mlm_loss)
losses_dict["mlm_loss"] = float(mlm_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
self.logger.info(self.msg)