You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/common/frontend/mfcc.cc

109 lines
3.7 KiB

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/audio/mfcc.h"
#include "kaldi/base/kaldi-math.h"
#include "kaldi/feat/feature-common.h"
#include "kaldi/feat/feature-functions.h"
#include "kaldi/matrix/matrix-functions.h"
namespace ppspeech {
using kaldi::BaseFloat;
using kaldi::int32;
using kaldi::Matrix;
using kaldi::SubVector;
using kaldi::Vector;
using kaldi::VectorBase;
using std::vector;
Mfcc::Mfcc(const MfccOptions& opts,
std::unique_ptr<FrontendInterface> base_extractor)
: opts_(opts),
computer_(opts.mfcc_opts),
window_function_(computer_.GetFrameOptions()) {
base_extractor_ = std::move(base_extractor);
chunk_sample_size_ =
static_cast<int32>(opts.streaming_chunk * opts.frame_opts.samp_freq);
}
void Mfcc::Accept(const VectorBase<BaseFloat>& inputs) {
base_extractor_->Accept(inputs);
}
bool Mfcc::Read(Vector<BaseFloat>* feats) {
Vector<BaseFloat> wav(chunk_sample_size_);
bool flag = base_extractor_->Read(&wav);
if (flag == false || wav.Dim() == 0) return false;
// append remaned waves
int32 wav_len = wav.Dim();
int32 left_len = remained_wav_.Dim();
Vector<BaseFloat> waves(left_len + wav_len);
waves.Range(0, left_len).CopyFromVec(remained_wav_);
waves.Range(left_len, wav_len).CopyFromVec(wav);
// compute speech feature
Compute(waves, feats);
// cache remaned waves
kaldi::FrameExtractionOptions frame_opts = computer_.GetFrameOptions();
int32 num_frames = kaldi::NumFrames(waves.Dim(), frame_opts);
int32 frame_shift = frame_opts.WindowShift();
int32 left_samples = waves.Dim() - frame_shift * num_frames;
remained_wav_.Resize(left_samples);
remained_wav_.CopyFromVec(
waves.Range(frame_shift * num_frames, left_samples));
return true;
}
// Compute spectrogram feat
bool Mfcc::Compute(const Vector<BaseFloat>& waves, Vector<BaseFloat>* feats) {
const FrameExtractionOptions& frame_opts = computer_.GetFrameOptions();
int32 num_samples = waves.Dim();
int32 frame_length = frame_opts.WindowSize();
int32 sample_rate = frame_opts.samp_freq;
if (num_samples < frame_length) {
return true;
}
int32 num_frames = kaldi::NumFrames(num_samples, frame_opts);
feats->Rsize(num_frames * Dim());
Vector<BaseFloat> window;
bool need_raw_log_energy = computer_.NeedRawLogEnergy();
for (int32 frame = 0; frame < num_frames; frame++) {
BaseFloat raw_log_energy = 0.0;
kaldi::ExtractWindow(0,
waves,
frame,
frame_opts,
window_function_,
&window,
need_raw_log_energy ? &raw_log_energy : NULL);
Vector<BaseFloat> this_feature(computer_.Dim(), kUndefined);
// note: this online feature-extraction code does not support VTLN.
BaseFloat vtln_warp = 1.0;
computer_.Compute(raw_log_energy, vtln_warp, &window, &this_feature);
SubVector<BaseFloat> output_row(feats->Data() + frame * Dim(), Dim());
output_row.CopyFromVec(this_feature);
}
return true;
}
} // namespace ppspeech