You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
2.7 KiB
97 lines
2.7 KiB
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
|
|
#include "frontend/audio/db_norm.h"
|
|
|
|
#include "kaldi/feat/cmvn.h"
|
|
#include "kaldi/util/kaldi-io.h"
|
|
|
|
namespace ppspeech {
|
|
|
|
using kaldi::BaseFloat;
|
|
using kaldi::SubVector;
|
|
using kaldi::Vector;
|
|
using kaldi::VectorBase;
|
|
using std::unique_ptr;
|
|
using std::vector;
|
|
|
|
DecibelNormalizer::DecibelNormalizer(
|
|
const DecibelNormalizerOptions& opts,
|
|
std::unique_ptr<FrontendInterface> base_extractor) {
|
|
base_extractor_ = std::move(base_extractor);
|
|
opts_ = opts;
|
|
dim_ = 1;
|
|
}
|
|
|
|
void DecibelNormalizer::Accept(const kaldi::VectorBase<BaseFloat>& waves) {
|
|
base_extractor_->Accept(waves);
|
|
}
|
|
|
|
bool DecibelNormalizer::Read(kaldi::Vector<BaseFloat>* waves) {
|
|
if (base_extractor_->Read(waves) == false || waves->Dim() == 0) {
|
|
return false;
|
|
}
|
|
Compute(waves);
|
|
return true;
|
|
}
|
|
|
|
bool DecibelNormalizer::Compute(VectorBase<BaseFloat>* waves) const {
|
|
// calculate db rms
|
|
BaseFloat rms_db = 0.0;
|
|
BaseFloat mean_square = 0.0;
|
|
BaseFloat gain = 0.0;
|
|
BaseFloat wave_float_normlization = 1.0f / (std::pow(2, 16 - 1));
|
|
|
|
vector<BaseFloat> samples;
|
|
samples.resize(waves->Dim());
|
|
for (size_t i = 0; i < samples.size(); ++i) {
|
|
samples[i] = (*waves)(i);
|
|
}
|
|
|
|
// square
|
|
for (auto& d : samples) {
|
|
if (opts_.convert_int_float) {
|
|
d = d * wave_float_normlization;
|
|
}
|
|
mean_square += d * d;
|
|
}
|
|
|
|
// mean
|
|
mean_square /= samples.size();
|
|
rms_db = 10 * std::log10(mean_square);
|
|
gain = opts_.target_db - rms_db;
|
|
|
|
if (gain > opts_.max_gain_db) {
|
|
LOG(ERROR)
|
|
<< "Unable to normalize segment to " << opts_.target_db << "dB,"
|
|
<< "because the the probable gain have exceeds opts_.max_gain_db"
|
|
<< opts_.max_gain_db << "dB.";
|
|
return false;
|
|
}
|
|
|
|
// Note that this is an in-place transformation.
|
|
for (auto& item : samples) {
|
|
// python item *= 10.0 ** (gain / 20.0)
|
|
item *= std::pow(10.0, gain / 20.0);
|
|
}
|
|
|
|
std::memcpy(
|
|
waves->Data(), samples.data(), sizeof(BaseFloat) * samples.size());
|
|
return true;
|
|
}
|
|
|
|
|
|
} // namespace ppspeech
|