You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/__init__.py

384 lines
12 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
from typing import List
from typing import Tuple
from typing import Union
import paddle
from paddle import nn
from paddle.fluid import core
from paddle.nn import functional as F
from deepspeech.utils.log import Log
#TODO(Hui Zhang): remove fluid import
logger = Log(__name__).getlog()
########### hcak logging #############
logger.warn = logger.warning
########### hcak paddle #############
paddle.half = 'float16'
paddle.float = 'float32'
paddle.double = 'float64'
paddle.short = 'int16'
paddle.int = 'int32'
paddle.long = 'int64'
paddle.uint16 = 'uint16'
paddle.cdouble = 'complex128'
def convert_dtype_to_string(tensor_dtype):
"""
Convert the data type in numpy to the data type in Paddle
Args:
tensor_dtype(core.VarDesc.VarType): the data type in numpy.
Returns:
core.VarDesc.VarType: the data type in Paddle.
"""
dtype = tensor_dtype
if dtype == core.VarDesc.VarType.FP32:
return paddle.float32
elif dtype == core.VarDesc.VarType.FP64:
return paddle.float64
elif dtype == core.VarDesc.VarType.FP16:
return paddle.float16
elif dtype == core.VarDesc.VarType.INT32:
return paddle.int32
elif dtype == core.VarDesc.VarType.INT16:
return paddle.int16
elif dtype == core.VarDesc.VarType.INT64:
return paddle.int64
elif dtype == core.VarDesc.VarType.BOOL:
return paddle.bool
elif dtype == core.VarDesc.VarType.BF16:
# since there is still no support for bfloat16 in NumPy,
# uint16 is used for casting bfloat16
return paddle.uint16
elif dtype == core.VarDesc.VarType.UINT8:
return paddle.uint8
elif dtype == core.VarDesc.VarType.INT8:
return paddle.int8
elif dtype == core.VarDesc.VarType.COMPLEX64:
return paddle.complex64
elif dtype == core.VarDesc.VarType.COMPLEX128:
return paddle.complex128
else:
raise ValueError("Not supported tensor dtype %s" % dtype)
if not hasattr(paddle, 'softmax'):
logger.debug("register user softmax to paddle, remove this when fixed!")
setattr(paddle, 'softmax', paddle.nn.functional.softmax)
if not hasattr(paddle, 'log_softmax'):
logger.debug("register user log_softmax to paddle, remove this when fixed!")
setattr(paddle, 'log_softmax', paddle.nn.functional.log_softmax)
if not hasattr(paddle, 'sigmoid'):
logger.debug("register user sigmoid to paddle, remove this when fixed!")
setattr(paddle, 'sigmoid', paddle.nn.functional.sigmoid)
if not hasattr(paddle, 'log_sigmoid'):
logger.debug("register user log_sigmoid to paddle, remove this when fixed!")
setattr(paddle, 'log_sigmoid', paddle.nn.functional.log_sigmoid)
if not hasattr(paddle, 'relu'):
logger.debug("register user relu to paddle, remove this when fixed!")
setattr(paddle, 'relu', paddle.nn.functional.relu)
def cat(xs, dim=0):
return paddle.concat(xs, axis=dim)
if not hasattr(paddle, 'cat'):
logger.debug(
"override cat of paddle if exists or register, remove this when fixed!")
paddle.cat = cat
########### hcak paddle.Tensor #############
def item(x: paddle.Tensor):
return x.numpy().item()
if not hasattr(paddle.Tensor, 'item'):
logger.debug(
"override item of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.item = item
def func_long(x: paddle.Tensor):
return paddle.cast(x, paddle.long)
if not hasattr(paddle.Tensor, 'long'):
logger.debug(
"override long of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.long = func_long
if not hasattr(paddle.Tensor, 'numel'):
logger.debug(
"override numel of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.numel = paddle.numel
def new_full(x: paddle.Tensor,
size: Union[List[int], Tuple[int], paddle.Tensor],
fill_value: Union[float, int, bool, paddle.Tensor],
dtype=None):
return paddle.full(size, fill_value, dtype=x.dtype)
if not hasattr(paddle.Tensor, 'new_full'):
logger.debug(
"override new_full of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.new_full = new_full
def eq(xs: paddle.Tensor, ys: Union[paddle.Tensor, float]) -> paddle.Tensor:
if convert_dtype_to_string(xs.dtype) == paddle.bool:
xs = xs.astype(paddle.int)
return xs.equal(
paddle.to_tensor(
ys, dtype=convert_dtype_to_string(xs.dtype), place=xs.place))
if not hasattr(paddle.Tensor, 'eq'):
logger.debug(
"override eq of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.eq = eq
if not hasattr(paddle, 'eq'):
logger.debug(
"override eq of paddle if exists or register, remove this when fixed!")
paddle.eq = eq
def contiguous(xs: paddle.Tensor) -> paddle.Tensor:
return xs
if not hasattr(paddle.Tensor, 'contiguous'):
logger.debug(
"override contiguous of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.contiguous = contiguous
def size(xs: paddle.Tensor, *args: int) -> paddle.Tensor:
nargs = len(args)
assert (nargs <= 1)
s = paddle.shape(xs)
if nargs == 1:
return s[args[0]]
else:
return s
#`to_static` do not process `size` property, maybe some `paddle` api dependent on it.
logger.debug(
"override size of paddle.Tensor "
"(`to_static` do not process `size` property, maybe some `paddle` api dependent on it), remove this when fixed!"
)
paddle.Tensor.size = size
def view(xs: paddle.Tensor, *args: int) -> paddle.Tensor:
return xs.reshape(args)
if not hasattr(paddle.Tensor, 'view'):
logger.debug("register user view to paddle.Tensor, remove this when fixed!")
paddle.Tensor.view = view
def view_as(xs: paddle.Tensor, ys: paddle.Tensor) -> paddle.Tensor:
return xs.reshape(ys.size())
if not hasattr(paddle.Tensor, 'view_as'):
logger.debug(
"register user view_as to paddle.Tensor, remove this when fixed!")
paddle.Tensor.view_as = view_as
def is_broadcastable(shp1, shp2):
for a, b in zip(shp1[::-1], shp2[::-1]):
if a == 1 or b == 1 or a == b:
pass
else:
return False
return True
def masked_fill(xs: paddle.Tensor,
mask: paddle.Tensor,
value: Union[float, int]):
assert is_broadcastable(xs.shape, mask.shape) is True
bshape = paddle.broadcast_shape(xs.shape, mask.shape)
mask = mask.broadcast_to(bshape)
trues = paddle.ones_like(xs) * value
xs = paddle.where(mask, trues, xs)
return xs
if not hasattr(paddle.Tensor, 'masked_fill'):
logger.debug(
"register user masked_fill to paddle.Tensor, remove this when fixed!")
paddle.Tensor.masked_fill = masked_fill
def masked_fill_(xs: paddle.Tensor,
mask: paddle.Tensor,
value: Union[float, int]) -> paddle.Tensor:
assert is_broadcastable(xs.shape, mask.shape) is True
bshape = paddle.broadcast_shape(xs.shape, mask.shape)
mask = mask.broadcast_to(bshape)
trues = paddle.ones_like(xs) * value
ret = paddle.where(mask, trues, xs)
paddle.assign(ret.detach(), output=xs)
return xs
if not hasattr(paddle.Tensor, 'masked_fill_'):
logger.debug(
"register user masked_fill_ to paddle.Tensor, remove this when fixed!")
paddle.Tensor.masked_fill_ = masked_fill_
def fill_(xs: paddle.Tensor, value: Union[float, int]) -> paddle.Tensor:
val = paddle.full_like(xs, value)
paddle.assign(val.detach(), output=xs)
return xs
if not hasattr(paddle.Tensor, 'fill_'):
logger.debug(
"register user fill_ to paddle.Tensor, remove this when fixed!")
paddle.Tensor.fill_ = fill_
def repeat(xs: paddle.Tensor, *size: Any) -> paddle.Tensor:
return paddle.tile(xs, size)
if not hasattr(paddle.Tensor, 'repeat'):
logger.debug(
"register user repeat to paddle.Tensor, remove this when fixed!")
paddle.Tensor.repeat = repeat
if not hasattr(paddle.Tensor, 'softmax'):
logger.debug(
"register user softmax to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'softmax', paddle.nn.functional.softmax)
if not hasattr(paddle.Tensor, 'sigmoid'):
logger.debug(
"register user sigmoid to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'sigmoid', paddle.nn.functional.sigmoid)
if not hasattr(paddle.Tensor, 'relu'):
logger.debug("register user relu to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'relu', paddle.nn.functional.relu)
def type_as(x: paddle.Tensor, other: paddle.Tensor) -> paddle.Tensor:
return x.astype(other.dtype)
if not hasattr(paddle.Tensor, 'type_as'):
logger.debug(
"register user type_as to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'type_as', type_as)
def to(x: paddle.Tensor, *args, **kwargs) -> paddle.Tensor:
assert len(args) == 1
if isinstance(args[0], str): # dtype
return x.astype(args[0])
elif isinstance(args[0], paddle.Tensor): #Tensor
return x.astype(args[0].dtype)
else: # Device
return x
if not hasattr(paddle.Tensor, 'to'):
logger.debug("register user to to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'to', to)
def func_float(x: paddle.Tensor) -> paddle.Tensor:
return x.astype(paddle.float)
if not hasattr(paddle.Tensor, 'float'):
logger.debug(
"register user float to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'float', func_float)
def func_int(x: paddle.Tensor) -> paddle.Tensor:
return x.astype(paddle.int)
if not hasattr(paddle.Tensor, 'int'):
logger.debug("register user int to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'int', func_int)
def tolist(x: paddle.Tensor) -> List[Any]:
return x.numpy().tolist()
if not hasattr(paddle.Tensor, 'tolist'):
logger.debug(
"register user tolist to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'tolist', tolist)
# hack loss
def ctc_loss(logits,
labels,
input_lengths,
label_lengths,
blank=0,
reduction='mean',
norm_by_times=True):
#logger.info("my ctc loss with norm by times")
## https://github.com/PaddlePaddle/Paddle/blob/f5ca2db2cc/paddle/fluid/operators/warpctc_op.h#L403
loss_out = paddle.fluid.layers.warpctc(logits, labels, blank, norm_by_times,
input_lengths, label_lengths)
loss_out = paddle.fluid.layers.squeeze(loss_out, [-1])
assert reduction in ['mean', 'sum', 'none']
if reduction == 'mean':
loss_out = paddle.mean(loss_out / label_lengths)
elif reduction == 'sum':
loss_out = paddle.sum(loss_out)
return loss_out
logger.debug(
"override ctc_loss of paddle.nn.functional if exists, remove this when fixed!"
)
F.ctc_loss = ctc_loss