You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/text/speechtask/punctuation_restoration/model/lstm.py

86 lines
2.8 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.initializer as I
class RnnLm(nn.Layer):
def __init__(self,
vocab_size,
punc_size,
hidden_size,
num_layers=1,
init_scale=0.1,
dropout=0.0):
super(RnnLm, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.init_scale = init_scale
self.punc_size = punc_size
self.embedder = nn.Embedding(
vocab_size,
hidden_size,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.lstm = nn.LSTM(
input_size=hidden_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout,
weight_ih_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)),
weight_hh_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.fc = nn.Linear(
hidden_size,
punc_size,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)),
bias_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.dropout = nn.Dropout(p=dropout)
self.softmax = nn.Softmax()
def forward(self, inputs):
x = inputs
x_emb = self.embedder(x)
x_emb = self.dropout(x_emb)
y, (_, _) = self.lstm(x_emb)
y = self.dropout(y)
y = self.fc(y)
y = paddle.reshape(y, shape=[-1, self.punc_size])
logit = self.softmax(y)
return y, logit
class CrossEntropyLossForLm(nn.Layer):
def __init__(self):
super(CrossEntropyLossForLm, self).__init__()
def forward(self, y, label):
label = paddle.unsqueeze(label, axis=2)
loss = paddle.nn.functional.cross_entropy(
input=y, label=label, reduction='none')
loss = paddle.squeeze(loss, axis=[2])
loss = paddle.mean(loss, axis=[0])
loss = paddle.sum(loss)
return loss