You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
86 lines
2.8 KiB
86 lines
2.8 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.initializer as I
|
|
|
|
|
|
class RnnLm(nn.Layer):
|
|
def __init__(self,
|
|
vocab_size,
|
|
punc_size,
|
|
hidden_size,
|
|
num_layers=1,
|
|
init_scale=0.1,
|
|
dropout=0.0):
|
|
super(RnnLm, self).__init__()
|
|
self.hidden_size = hidden_size
|
|
self.num_layers = num_layers
|
|
self.init_scale = init_scale
|
|
self.punc_size = punc_size
|
|
|
|
self.embedder = nn.Embedding(
|
|
vocab_size,
|
|
hidden_size,
|
|
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
low=-init_scale, high=init_scale)))
|
|
|
|
self.lstm = nn.LSTM(
|
|
input_size=hidden_size,
|
|
hidden_size=hidden_size,
|
|
num_layers=num_layers,
|
|
dropout=dropout,
|
|
weight_ih_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
low=-init_scale, high=init_scale)),
|
|
weight_hh_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
low=-init_scale, high=init_scale)))
|
|
|
|
self.fc = nn.Linear(
|
|
hidden_size,
|
|
punc_size,
|
|
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
low=-init_scale, high=init_scale)),
|
|
bias_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
low=-init_scale, high=init_scale)))
|
|
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
self.softmax = nn.Softmax()
|
|
|
|
def forward(self, inputs):
|
|
x = inputs
|
|
x_emb = self.embedder(x)
|
|
x_emb = self.dropout(x_emb)
|
|
|
|
y, (_, _) = self.lstm(x_emb)
|
|
|
|
y = self.dropout(y)
|
|
y = self.fc(y)
|
|
y = paddle.reshape(y, shape=[-1, self.punc_size])
|
|
logit = self.softmax(y)
|
|
return y, logit
|
|
|
|
|
|
class CrossEntropyLossForLm(nn.Layer):
|
|
def __init__(self):
|
|
super(CrossEntropyLossForLm, self).__init__()
|
|
|
|
def forward(self, y, label):
|
|
label = paddle.unsqueeze(label, axis=2)
|
|
loss = paddle.nn.functional.cross_entropy(
|
|
input=y, label=label, reduction='none')
|
|
loss = paddle.squeeze(loss, axis=[2])
|
|
loss = paddle.mean(loss, axis=[0])
|
|
loss = paddle.sum(loss)
|
|
return loss
|