You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/speedyspeech/train.py

223 lines
7.6 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import shutil
from pathlib import Path
import jsonlines
import numpy as np
import paddle
import yaml
from paddle import DataParallel
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import speedyspeech_batch_fn
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.models.speedyspeech import SpeedySpeech
from paddlespeech.t2s.models.speedyspeech import SpeedySpeechEvaluator
from paddlespeech.t2s.models.speedyspeech import SpeedySpeechUpdater
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.optimizer import build_optimizers
from paddlespeech.t2s.training.seeding import seed_everything
from paddlespeech.t2s.training.trainer import Trainer
def train_sp(args, config):
# decides device type and whether to run in parallel
# setup running environment correctly
world_size = paddle.distributed.get_world_size()
if not paddle.is_compiled_with_cuda():
paddle.set_device("cpu")
else:
paddle.set_device("gpu")
if world_size > 1:
paddle.distributed.init_parallel_env()
# set the random seed, it is a must for multiprocess training
seed_everything(config.seed)
print(
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
)
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
# construct dataset for training and validation
with jsonlines.open(args.train_metadata, 'r') as reader:
train_metadata = list(reader)
if args.use_relative_path:
# if use_relative_path in preprocess, covert it to absolute path here
metadata_dir = Path(args.train_metadata).parent
for item in train_metadata:
item["feats"] = str(metadata_dir / item["feats"])
train_dataset = DataTable(
data=train_metadata,
fields=[
"phones", "tones", "num_phones", "num_frames", "feats", "durations"
],
converters={
"feats": np.load,
}, )
with jsonlines.open(args.dev_metadata, 'r') as reader:
dev_metadata = list(reader)
if args.use_relative_path:
# if use_relative_path in preprocess, covert it to absolute path here
metadata_dir = Path(args.dev_metadata).parent
for item in dev_metadata:
item["feats"] = str(metadata_dir / item["feats"])
dev_dataset = DataTable(
data=dev_metadata,
fields=[
"phones", "tones", "num_phones", "num_frames", "feats", "durations"
],
converters={
"feats": np.load,
}, )
# collate function and dataloader
train_sampler = DistributedBatchSampler(
train_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True)
print("samplers done!")
train_dataloader = DataLoader(
train_dataset,
batch_sampler=train_sampler,
collate_fn=speedyspeech_batch_fn,
num_workers=config.num_workers)
dev_dataloader = DataLoader(
dev_dataset,
shuffle=False,
drop_last=False,
batch_size=config.batch_size,
collate_fn=speedyspeech_batch_fn,
num_workers=config.num_workers)
print("dataloaders done!")
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
with open(args.tones_dict, "r") as f:
tone_id = [line.strip().split() for line in f.readlines()]
tone_size = len(tone_id)
print("tone_size:", tone_size)
model = SpeedySpeech(
vocab_size=vocab_size, tone_size=tone_size, **config["model"])
if world_size > 1:
model = DataParallel(model)
print("model done!")
optimizer = build_optimizers(model, **config["optimizer"])
print("optimizer done!")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
if dist.get_rank() == 0:
config_name = args.config.split("/")[-1]
# copy conf to output_dir
shutil.copyfile(args.config, output_dir / config_name)
updater = SpeedySpeechUpdater(
model=model,
optimizer=optimizer,
dataloader=train_dataloader,
output_dir=output_dir)
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
evaluator = SpeedySpeechEvaluator(
model, dev_dataloader, output_dir=output_dir)
if dist.get_rank() == 0:
trainer.extend(evaluator, trigger=(1, "epoch"))
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
trainer.run()
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(
description="Train a Speedyspeech model with sigle speaker dataset.")
parser.add_argument("--config", type=str, help="config file.")
parser.add_argument("--train-metadata", type=str, help="training data.")
parser.add_argument("--dev-metadata", type=str, help="dev data.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--device", type=str, default="gpu", help="device type to use.")
parser.add_argument(
"--nprocs", type=int, default=1, help="number of processes.")
parser.add_argument("--verbose", type=int, default=1, help="verbose.")
def str2bool(str):
return True if str.lower() == 'true' else False
parser.add_argument(
"--use-relative-path",
type=str2bool,
default=False,
help="whether use relative path in metadata")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
parser.add_argument(
"--tones-dict", type=str, default=None, help="tone vocabulary file.")
# 这里可以多传入 max_epoch 等
args, rest = parser.parse_known_args()
if args.device == "cpu" and args.nprocs > 1:
raise RuntimeError("Multiprocess training on CPU is not supported.")
with open(args.config) as f:
config = CfgNode(yaml.safe_load(f))
if rest:
extra = []
# to support key=value format
for item in rest:
# remove "--"
item = item[2:]
extra.extend(item.split("=", maxsplit=1))
config.merge_from_list(extra)
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
# dispatch
if args.nprocs > 1:
dist.spawn(train_sp, (args, config), nprocs=args.nprocs)
else:
train_sp(args, config)
if __name__ == "__main__":
main()