You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.5 KiB
83 lines
2.5 KiB
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import logging
|
|
|
|
import jsonlines
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
from paddlespeech.t2s.datasets.data_table import DataTable
|
|
|
|
|
|
def get_minmax(spec, min_spec, max_spec):
|
|
# spec: [T, 80]
|
|
for i in range(spec.shape[1]):
|
|
min_value = np.min(spec[:, i])
|
|
max_value = np.max(spec[:, i])
|
|
min_spec[i] = min(min_value, min_spec[i])
|
|
max_spec[i] = max(max_value, max_spec[i])
|
|
|
|
return min_spec, max_spec
|
|
|
|
|
|
def main():
|
|
"""Run preprocessing process."""
|
|
parser = argparse.ArgumentParser(
|
|
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
|
|
)
|
|
parser.add_argument(
|
|
"--metadata",
|
|
type=str,
|
|
required=True,
|
|
help="directory including feature files to be normalized. "
|
|
"you need to specify either *-scp or rootdir.")
|
|
|
|
parser.add_argument(
|
|
"--speech-stretchs",
|
|
type=str,
|
|
required=True,
|
|
help="min max spec file. only computer on train data")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# get dataset
|
|
with jsonlines.open(args.metadata, 'r') as reader:
|
|
metadata = list(reader)
|
|
dataset = DataTable(
|
|
metadata, converters={
|
|
"speech": np.load,
|
|
})
|
|
logging.info(f"The number of files = {len(dataset)}.")
|
|
|
|
n_mel = 80
|
|
min_spec = 100.0 * np.ones(shape=(n_mel), dtype=np.float32)
|
|
max_spec = -100.0 * np.ones(shape=(n_mel), dtype=np.float32)
|
|
|
|
for item in tqdm(dataset):
|
|
spec = item['speech']
|
|
min_spec, max_spec = get_minmax(spec, min_spec, max_spec)
|
|
|
|
# Using min_spec=-6.0 training effect is better so far
|
|
min_spec = -6.0 * np.ones(shape=(n_mel), dtype=np.float32)
|
|
min_max_spec = np.stack([min_spec, max_spec], axis=0)
|
|
np.save(
|
|
str(args.speech_stretchs),
|
|
min_max_spec.astype(np.float32),
|
|
allow_pickle=False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|