You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/diffsinger/get_minmax.py

83 lines
2.5 KiB

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import jsonlines
import numpy as np
from tqdm import tqdm
from paddlespeech.t2s.datasets.data_table import DataTable
def get_minmax(spec, min_spec, max_spec):
# spec: [T, 80]
for i in range(spec.shape[1]):
min_value = np.min(spec[:, i])
max_value = np.max(spec[:, i])
min_spec[i] = min(min_value, min_spec[i])
max_spec[i] = max(max_value, max_spec[i])
return min_spec, max_spec
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
)
parser.add_argument(
"--metadata",
type=str,
required=True,
help="directory including feature files to be normalized. "
"you need to specify either *-scp or rootdir.")
parser.add_argument(
"--speech-stretchs",
type=str,
required=True,
help="min max spec file. only computer on train data")
args = parser.parse_args()
# get dataset
with jsonlines.open(args.metadata, 'r') as reader:
metadata = list(reader)
dataset = DataTable(
metadata, converters={
"speech": np.load,
})
logging.info(f"The number of files = {len(dataset)}.")
n_mel = 80
min_spec = 100.0 * np.ones(shape=(n_mel), dtype=np.float32)
max_spec = -100.0 * np.ones(shape=(n_mel), dtype=np.float32)
for item in tqdm(dataset):
spec = item['speech']
min_spec, max_spec = get_minmax(spec, min_spec, max_spec)
# Using min_spec=-6.0 training effect is better so far
min_spec = -6.0 * np.ones(shape=(n_mel), dtype=np.float32)
min_max_spec = np.stack([min_spec, max_spec], axis=0)
np.save(
str(args.speech_stretchs),
min_max_spec.astype(np.float32),
allow_pickle=False)
if __name__ == "__main__":
main()