You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/diffsinger/gen_gta_mel.py

241 lines
7.8 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# generate mels using durations.txt
# for mb melgan finetune
import argparse
import os
from pathlib import Path
import numpy as np
import paddle
import yaml
from tqdm import tqdm
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.preprocess_utils import get_sentences_svs
from paddlespeech.t2s.models.diffsinger import DiffSinger
from paddlespeech.t2s.models.diffsinger import DiffSingerInference
from paddlespeech.t2s.modules.normalizer import ZScore
from paddlespeech.t2s.utils import str2bool
def evaluate(args, diffsinger_config):
rootdir = Path(args.rootdir).expanduser()
assert rootdir.is_dir()
# construct dataset for evaluation
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
phone_dict = {}
for phn, id in phn_id:
phone_dict[phn] = int(id)
if args.speaker_dict:
with open(args.speaker_dict, 'rt') as f:
spk_id_list = [line.strip().split() for line in f.readlines()]
spk_num = len(spk_id_list)
else:
spk_num = None
with open(args.diffsinger_stretch, "r") as f:
spec_min = np.load(args.diffsinger_stretch)[0]
spec_max = np.load(args.diffsinger_stretch)[1]
spec_min = paddle.to_tensor(spec_min)
spec_max = paddle.to_tensor(spec_max)
print("min and max spec done!")
odim = diffsinger_config.n_mels
diffsinger_config["model"]["fastspeech2_params"]["spk_num"] = spk_num
model = DiffSinger(
spec_min=spec_min,
spec_max=spec_max,
idim=vocab_size,
odim=odim,
**diffsinger_config["model"], )
model.set_state_dict(paddle.load(args.diffsinger_checkpoint)["main_params"])
model.eval()
stat = np.load(args.diffsinger_stat)
mu, std = stat
mu = paddle.to_tensor(mu)
std = paddle.to_tensor(std)
diffsinger_normalizer = ZScore(mu, std)
diffsinger_inference = DiffSingerInference(diffsinger_normalizer, model)
diffsinger_inference.eval()
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
sentences, speaker_set = get_sentences_svs(
args.dur_file,
dataset=args.dataset,
sample_rate=diffsinger_config.fs,
n_shift=diffsinger_config.n_shift, )
if args.dataset == "opencpop":
wavdir = rootdir / "wavs"
# split data into 3 sections
train_file = rootdir / "train.txt"
train_wav_files = []
with open(train_file, "r") as f_train:
for line in f_train.readlines():
utt = line.split("|")[0]
wav_name = utt + ".wav"
wav_path = wavdir / wav_name
train_wav_files.append(wav_path)
test_file = rootdir / "test.txt"
dev_wav_files = []
test_wav_files = []
num_dev = 106
count = 0
with open(test_file, "r") as f_test:
for line in f_test.readlines():
count += 1
utt = line.split("|")[0]
wav_name = utt + ".wav"
wav_path = wavdir / wav_name
if count > num_dev:
test_wav_files.append(wav_path)
else:
dev_wav_files.append(wav_path)
else:
print("dataset should in {opencpop} now!")
train_wav_files = [
os.path.basename(str(str_path)) for str_path in train_wav_files
]
dev_wav_files = [
os.path.basename(str(str_path)) for str_path in dev_wav_files
]
test_wav_files = [
os.path.basename(str(str_path)) for str_path in test_wav_files
]
for i, utt_id in enumerate(tqdm(sentences)):
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
note = sentences[utt_id][2]
note_dur = sentences[utt_id][3]
is_slur = sentences[utt_id][4]
speaker = sentences[utt_id][-1]
phone_ids = [phone_dict[phn] for phn in phones]
phone_ids = paddle.to_tensor(np.array(phone_ids))
if args.speaker_dict:
speaker_id = int(
[item[1] for item in spk_id_list if speaker == item[0]][0])
speaker_id = paddle.to_tensor(speaker_id)
else:
speaker_id = None
durations = paddle.to_tensor(np.array(durations))
note = paddle.to_tensor(np.array(note))
note_dur = paddle.to_tensor(np.array(note_dur))
is_slur = paddle.to_tensor(np.array(is_slur))
# 生成的和真实的可能有 1, 2 帧的差距,但是 batch_fn 会修复
# split data into 3 sections
wav_path = utt_id + ".wav"
if wav_path in train_wav_files:
sub_output_dir = output_dir / ("train/raw")
elif wav_path in dev_wav_files:
sub_output_dir = output_dir / ("dev/raw")
elif wav_path in test_wav_files:
sub_output_dir = output_dir / ("test/raw")
sub_output_dir.mkdir(parents=True, exist_ok=True)
with paddle.no_grad():
mel = diffsinger_inference(
text=phone_ids,
note=note,
note_dur=note_dur,
is_slur=is_slur,
get_mel_fs2=False)
np.save(sub_output_dir / (utt_id + "_feats.npy"), mel)
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(
description="Generate mel with diffsinger.")
parser.add_argument(
"--dataset",
default="opencpop",
type=str,
help="name of dataset, should in {opencpop} now")
parser.add_argument(
"--rootdir", default=None, type=str, help="directory to dataset.")
parser.add_argument(
"--diffsinger-config", type=str, help="diffsinger config file.")
parser.add_argument(
"--diffsinger-checkpoint",
type=str,
help="diffsinger checkpoint to load.")
parser.add_argument(
"--diffsinger-stat",
type=str,
help="mean and standard deviation used to normalize spectrogram when training diffsinger."
)
parser.add_argument(
"--diffsinger-stretch",
type=str,
help="min and max mel used to stretch before training diffusion.")
parser.add_argument(
"--phones-dict",
type=str,
default="phone_id_map.txt",
help="phone vocabulary file.")
parser.add_argument(
"--speaker-dict", type=str, default=None, help="speaker id map file.")
parser.add_argument(
"--dur-file", default=None, type=str, help="path to durations.txt.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
args = parser.parse_args()
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
paddle.set_device("gpu")
else:
print("ngpu should >= 0 !")
with open(args.diffsinger_config) as f:
diffsinger_config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(diffsinger_config)
evaluate(args, diffsinger_config)
if __name__ == "__main__":
main()