You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
82 lines
2.9 KiB
82 lines
2.9 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddleaudio
|
|
import torch
|
|
import torchaudio
|
|
|
|
from .base import FeatTest
|
|
|
|
|
|
class TestKaldi(FeatTest):
|
|
def initParmas(self):
|
|
self.window_size = 1024
|
|
self.dtype = 'float32'
|
|
|
|
def test_window(self):
|
|
t_hann_window = torch.hann_window(
|
|
self.window_size, periodic=False, dtype=eval(f'torch.{self.dtype}'))
|
|
t_hamm_window = torch.hamming_window(
|
|
self.window_size,
|
|
periodic=False,
|
|
alpha=0.54,
|
|
beta=0.46,
|
|
dtype=eval(f'torch.{self.dtype}'))
|
|
t_povey_window = torch.hann_window(
|
|
self.window_size, periodic=False,
|
|
dtype=eval(f'torch.{self.dtype}')).pow(0.85)
|
|
|
|
p_hann_window = paddleaudio.functional.window.get_window(
|
|
'hann',
|
|
self.window_size,
|
|
fftbins=False,
|
|
dtype=eval(f'paddle.{self.dtype}'))
|
|
p_hamm_window = paddleaudio.functional.window.get_window(
|
|
'hamming',
|
|
self.window_size,
|
|
fftbins=False,
|
|
dtype=eval(f'paddle.{self.dtype}'))
|
|
p_povey_window = paddleaudio.functional.window.get_window(
|
|
'hann',
|
|
self.window_size,
|
|
fftbins=False,
|
|
dtype=eval(f'paddle.{self.dtype}')).pow(0.85)
|
|
|
|
np.testing.assert_array_almost_equal(t_hann_window, p_hann_window)
|
|
np.testing.assert_array_almost_equal(t_hamm_window, p_hamm_window)
|
|
np.testing.assert_array_almost_equal(t_povey_window, p_povey_window)
|
|
|
|
def test_fbank(self):
|
|
ta_features = torchaudio.compliance.kaldi.fbank(
|
|
torch.from_numpy(self.waveform.astype(self.dtype)))
|
|
pa_features = paddleaudio.compliance.kaldi.fbank(
|
|
paddle.to_tensor(self.waveform.astype(self.dtype)))
|
|
np.testing.assert_array_almost_equal(
|
|
ta_features, pa_features, decimal=4)
|
|
|
|
def test_mfcc(self):
|
|
ta_features = torchaudio.compliance.kaldi.mfcc(
|
|
torch.from_numpy(self.waveform.astype(self.dtype)))
|
|
pa_features = paddleaudio.compliance.kaldi.mfcc(
|
|
paddle.to_tensor(self.waveform.astype(self.dtype)))
|
|
np.testing.assert_array_almost_equal(
|
|
ta_features, pa_features, decimal=4)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|